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Abstract

Monte Carlo simulations with local updates tend to become time-consuming when large-scale correlations exist, such as in
critical systems. For a limited, but increasing number of model systems, nonlocal ‘cluster’ algorithms are available that are
orders of magnitude more efficient than algorithms with local updates. Cluster algorithms can be defined on the basis of the
symmetry properties of the Hamiltonian; different symmetries can thus lead to different cluster algorithms. We review a number
of existing cluster algorithms, and describe new ones for an Ising-like model with two- and three-spin interactions, and for the
chiral Potts model. New simulation data for the Ising-like model allow an accurate determination of its specific-heat exponent;
this result confirms existing ideas that the model belongs to the 4-state Potts universality class. 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Monte Carlo simulations of many-particle sys-
tems frequently use a Metropolis-type update mecha-
nism [1]. Such algorithms produce local changes: each
configuration update is restricted to a small neighbor-
hood. Near criticality, such algorithms suffer from the
critical-slowing-down phenomenon. This effect is de-
scribed by the dynamical exponentz; the autocorrela-
tion time τL (expressed in updatesper particle) of a
critical system of linear sizeL satisfies the following
scaling equation

τL ∝ Lz. (1)
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Models with short-range interactions ind dimensions
require roughlyLd operations to update every parti-
cle in the system. The generation of a statistically in-
dependent state thus involves a number of the order
of Ld+z operations. The value ofz still depends on
the universality class of the model and the simulation
dynamics, but one often findsz ≈ 2; for instance,z
is close to 13/6 for the Ising model in two dimen-
sions [2]. As a consequence, the required simulation
time increases rapidly with the system sizeL. The
critical-slowing-down phenomenon thus poses a bar-
rier that restricts the computation of statistically accu-
rate data to small systems.

A remarkable breakthrough was achieved by
Swendsen and Wang [3], who formulated an algorithm
for the Potts model (which includes the Ising model as
a special case) that produces ‘nonlocal’ updates: in-
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stead of single spins, whole clusters of spins are si-
multaneously flipped. The sizes of these clusters are
essentially random, and can be large. Thus large steps
in the configuration space can now be made, and as a
consequence, the dynamic exponentz decreases con-
siderably [3].

The validity of this cluster algorithm can be ex-
plained on the basis of the Kasteleyn–Fortuin random-
cluster decomposition [4] of the Potts model. This is a
probabilistic process that divides the spins into groups
called ‘random clusters’. While all spins in a random
cluster have the same sign, correlations between spins
in different clusters are zero. Thus, one has the free-
dom to randomly and independently assign a new spin
value to each cluster. This is precisely what happens
in the Swendsen–Wang algorithm. Even more effi-
cient varieties of this cluster algorithm have since then
been developed [5,6]. The Wolff single-cluster algo-
rithm [6] stands out because of its simplicity: only one
cluster is formed and flipped at a time.

Several generalizations of these algorithms have
been derived. The Creutz formulation [7] of cluster
algorithms in terms of demons may be helpful, for
instance for the purpose of handling antiferromagnetic
interactions. In models which use vector spins instead
of discrete spins, such as the Heisenberg and XY
models, one can still single out one Cartesian spin
component and treat it as an Ising variable [8]. It has
also been demonstrated that multispin interactions
can, at least in some cases, be handled by a cluster
algorithm [9].

However, it is clear that these highly efficient non-
local algorithms are not as easy to generalize as local
(Metropolis-type) algorithms, and are thus restricted
to a limited range of applicability. The efficiency of
a cluster algorithm is obviously related to cluster-
size distribution. A possible pitfall of newly devised
cluster algorithms is the situation that the clusters
tend to occupy practically the whole system, resulting
only in trivial changes of the spin configuration, and
in a limited efficiency. This situation naturally arises
when competing interactions are present. For opti-
mal efficiency, the percolation threshold of the cluster-
formation process should coincide with the critical
point. In a number of cases, such as the Swendsen–
Wang algorithm and the geometric cluster algorithm
(see Section 4) applied to the Potts model, this coin-
cidence can be proven. In other cases it is clear that

the critical point lies well within the region where the
cluster-formation process achieves percolation, away
from the percolation threshold. Thus the clusters tend
to be too large for maximum efficiency. As demon-
strated below (Section 3), even then a cluster algorithm
may prove to be quite useful.

After this brief (and necessarily incomplete) intro-
ductory review of cluster algorithms, we use the fol-
lowing sections to summarize some of our own con-
tributions in this field. We include new algorithms and
simulation results.

2. Long-range interactions

In systems where each particle interacts with every
other particle, the evaluation of the probability of a
local configuration change normally requires of the
order of Ld operations, so that the time needed per
independent critical configuration is of the order of
L2d+z. This steepL-dependence, which is even worse
than in the case of short-range interactions, has greatly
restricted the simulation of critical systems with long-
range forces.

A few years ago, a cluster algorithm became
available for spin systems with long-range interac-
tions [10]. Remarkably, it uses only roughly of the or-
der of Ld operations per independent configuration.
Its applications [11–14] include the one-dimensional
Ising chain with interactions decaying algebraically as
a function of the distancerij :

H/kBT = −
∑
ij

J r
−(d+σ)
ij sisj , (2)

where i and j label the lattice sites of spinssi and
sj , and the sum counts each spin pair once. The
spins can assume the values±1. This model functions
as a prototype for the study of the dependence of
critical properties on the range of the interactions, and
several of its properties are known analytically. But
most of our knowledge relies on a renormalization-
group analysis [15], and actual numerical results are
scarce. Simulations have been performed for systems
of up to 150,000 spins, which is two to three orders
of magnitude larger than in other studies of this
model. From a finite-size scaling analysis, a number
of critical properties were determined for several
values of 0< σ < 1. Among these properties is the
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Fig. 1. The inverse correlation-length exponent 1/ν for the
one-dimensional Ising chain with interactions decaying asr−(d+σ) .
For a description see the text.

correlation-length exponentν (upon approach ofT →
Tc, the spin–spin correlation lengthξ diverges as
|T − Tc|−ν ), which is depicted in Fig. 1. The accuracy
of the data allows a detailed comparison to the
analytical results: forσ � 1

2, the system is predicted
to exhibit classical critical behavior, albeit with aσ -
dependent correlation exponentν = 1/σ . For σ > 1

2,
our knowledge relies on an expansion inε ≡ 2σ − 1.
The interesting situation arises that (unlike for the
usual short-range interactions) a detailed verification
of the ε-expansion becomes possible forε � 1.
Indeed, our numerical results compare favorably to
the second-order expansion up toσ ≈ 0.8 (ε ≈ 0.6),
beyond which the crossover to the Kosterlitz–Thouless
transition atσ = 1 [16] takes place, as indicated by our
results forσ close to unity, which nicely approach the
lowest-order expansionν = 1/

√
2(1− σ) [17].

The long-range cluster algorithm is well applicable
to systems ind > 1 dimensions [10]. In particular,
it has been used to investigate the universal behavior
in the range ofσ where deviations from short-range
criticality first appear [14], and the crossover between
classical and short-range critical behavior [18].

3. Multispin interactions

In the presence of multispin interactions, the for-
mulation of a cluster algorithm is less straightforward
than in the case of pair interactions, and the feasibil-
ity depends on the precise form of the Hamiltonian.

The Baxter–Wu model [19] contains three-spin inter-
actions in all elementary faces of the triangular lat-
tice. One may thus single out one of the three sub-
lattices and consider its spins as fixed; then only pair
interactions remain between spins in the other two
sublattices. Each of these interactions may be ferro-
magnetic, zero or antiferromagnetic, depending on the
signs of two spins on the third sublattice. In spite of
the presence of antiferromagnetic interactions, there is
no ‘frustration’: whenever non-zero interactions form
a loop, the loop contains an even number of antiferro-
magnetic interactions. Under these conditions an effi-
cient cluster algorithm is well possible [9].

The Baxter–Wu model can be generalized in at
least two ways such that a cluster algorithm remains
possible. First, one can assign different couplings
K1 and K2 to the up and down triangles respec-
tively. The model is self-dual [20]; the self-dual line
is given by sinh(2K1)sinh(2K2) = 1. Simulations of
this model [21] show that the self-dual line is crit-
ical, and that the leading scaling behavior is that of
the 4-state Potts model. However, the logarithmic cor-
rection factors (which typically appear in this class of
models) seem to depend on the ratioK1/K2. While
for K1/K2 = 1 logarithmic factors are absent [19],
slow finite-size convergence suggests that they reap-
pear at other ratios [21]. Second, the model can be
generalized [22] toq-state Potts spins withq > 2
while its self-duality is preserved. We have simulated
this model using a suitably generalized cluster algo-
rithm [21], and found that forq = 3 andq = 4 it un-
dergoes a first-order phase transition at the self-dual
point. Forq > 2 the cluster algorithm appears to be
less effective than forq = 2; in the absence of a critical
state the cluster formation process resides no longer at
the percolation threshold.

In addition, we have constructed a cluster algorithm
for an Ising-like model with two- and three-spin
interactions described by

H/kBT = −K
∑
x,y

(sx,ysx,y+1 + sx,ysx+1,ysx+2,y),

(3)

where the spinsx,y can assume the values±1, and
x, y are the coordinates of its lattice site. This model
is critical atK = log(1 + √

2)/2 [20,23]. It has four
equivalent ordered phases, and may be expected to
belong to the four-state Potts universality class. Long
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Table 1
Monte Carlo results for the dimensionless specific heatC/kB of L×L Ising systems with two-
and three-spin interactions. For comparison we include two old results obtained by a special-
purpose computer [23]. The numbers of steps of the new simulations are given as the numbers
of flipped clusters (c) and those of the old simulations as the numbers of Metropolis sweeps
(s). The number of visits per spin in both types of simulations is roughly the same (the average
fractional cluster size is about 1/3 for the largest systems), but the statistical accuracy (given
in parentheses) of the cluster method is better for similar system sizes

L # steps C/kB L # steps C/kB

6 5.5× 108 c 1.1043 (2) 96 5.5× 108 c 9.689 (6)
9 5.5× 108 c 1.5906 (3) 144 5.5× 108 c 13.16 (1)

12 5.5× 108 c 2.0165 (4) 192 5.5× 108 c 16.40 (1)
18 5.5× 108 c 2.7686 (7) 288 5.5× 108 c 22.41 (2)
24 5.5× 108 c 3.442 (1) 384 5.5× 108 c 27.98 (3)
36 5.5× 108 c 4.665 (2) 576 2.0× 108 c 38.6 (1)
48 5.5× 108 c 5.776 (2) 64 2.0× 108 s 9.016 (22)
72 5.5× 108 c 7.810 (4) 128 3.0× 108 s 15.23 (7)

simulations using a local algorithm on a special-
purpose computer [23] indeed were consistent with the
four-state Potts universality class, but the exponents
could not be well determined. The accuracy was not
only limited by the critical slowing-down, but also by
an anomalously slow finite-size convergence.

By ‘freezing’ one randomly chosen sublattice ac-
cording tox mod 3= 0, 1 or 2, the three-spin inter-
actions are reduced to pair interactions, so that just as
for the Baxter–Wu model, a Wolff-like cluster simu-
lation becomes possible. However, unlike the case of
the Baxter–Wu model, frustrated loops may occur, and
indeed we find that the percolation threshold of the
clusters does not coincide with the critical point. The
useful changes produced by a cluster move are thus es-
sentially local in character. However, the scale of these
changes is much larger than a single lattice unit, so
that the algorithm is still considerably more efficient
than the Metropolis method. New results for the spe-
cific heatC are shown in Table 1.

Finite-size scaling for critical four-state Potts-like
models predicts

C(L) � C0 + L2yt−2[a1(logL)−1/3 + · · ·], (4)

where yt = 2/(2 − α) is the temperature exponent
and α describes the specific-heat divergence at the
critical point by C ∝ |T − Tc|−α . The new results
indicate that these terms are adequate forL � 48
(at least for system sizes equal to multiples of 3;
additional corrections to scaling occur for other sizes).
A least-squares fit of this formula includingyt as a

free parameter yieldsyt = 1.500± 0.001. Thus, the
specific-heat exponent is very close to the expected
value α = 2/3 which applies to the 4-state Potts
universality class.

4. Geometric clusters

In general a cluster algorithm can be formulated
on the basis of a symmetry property of the model,
i.e. the Hamiltonian should be invariant under that
symmetry. Moreover, the symmetry operation should
be self-inverse. These two conditions are sufficient
to prove detailed balance [24]. The Swendsen–Wang
algorithm [3] is thus based on theq-state permutation
symmetry of the Potts model (up-down symmetry in
the Ising case). A new type of cluster algorithm can
be devised on the basis of a geometric symmetry, for
instance, the inversion symmetry of the lattice.

Such geometric transformations were used by Dress
and Krauth [25] for the simulation of hard particles in
continuous space. Here the percolation threshold does
not coincide with the phase transition; in the case of
the simple-cubic hard-core lattice gas, it does [26],
and the critical-slowing-down phenomenon is strongly
suppressed.

The geometric cluster algorithm can also be applied
in the presence of finite spin–spin interactions. For the
case of the Potts model, it has been shown [24] that
the percolation threshold of the geometric clusters co-
incides with the critical point. Empirical evidence [24]
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indicates that this situation also occurs for the tricriti-
cal Blume–Capel model in three dimensions. Since the
number of spins with a certain value is not changed by
a geometric cluster step, it is possible to sample, e.g.,
the fixed-magnetization ensemble.

A variant of the geometric cluster algorithm is
suitable for application to theq-state chiral Potts
model. The three-state model is described by

H/kBT = −K
∑
〈ij〉

cos

[
2π

3
(σi − σj + �a · �rij )

]
, (5)

where the spinσk can assume the values 1, 2 or 3,
k labels its lattice site and�rij is the relative position
of spins σi and σj . The sum is on all nearest-
neighbor pairs〈ij 〉. For non-zero chirality parameter
�a the model is not invariant under spin permutations
and lattice inversions. However, a lattice inversion
combined with an inversion of theq Potts statesσ →
s − σ mod q (wheres is an arbitrary integer) leaves
the Hamiltonian invariant, and this provides the basis
for a nonlocal Monte Carlo algorithm. Due to the
inversion of the Potts states, the algorithm no longer
conserves the magnetization. Although chirality plays
no role in the Ising caseq = 2, the algorithm is still
applicable and thus provides another different way
to efficiently sample the canonical distribution of the
Ising model. Test calculations on theq = 3 chiral Potts
model indicate that the new algorithm is quite effective
for small chirality �a. For larger values it is clear that
the critical point and the percolation threshold of the
clusters no longer coincide.

5. Concluding remarks

For a limited group of model systems, nonlocal
‘cluster’ algorithms enable a much more efficient way
of simulation than local algorithms. For long-range
models the gain can be (see Section 2) of the order
of Ld+z. It reaches a value of about 108 for the largest
systems that have been simulated. The occurrence of
d in the exponent arises because it can be arranged
such that the algorithm executes an amount of work
per spinsi that is not proportional to the number of
interacting neighbors, but to the integrated coupling∑

j Kij in which that spin participates. As a conse-
quence of the existence of the thermodynamic limit of
the energy per spin, this amount of work remains finite

in ferromagnetic models, even if the number of inter-
acting neighbors diverges. In systems with antiferro-
magnetic interactions and ‘frustration’, such as occur
in the case of dipolar interactions, and such as used in
models for spin glasses and neural networks, the per-
colation threshold of the clusters moves away from the
critical point. This reduces the efficiency by a factor
of the order ofLz. However, even then a large factor
(possibly of the order ofLd ) may remain and thus pro-
vide a sufficient reason to apply the long-range cluster
algorithm.

The geometric cluster algorithm described above
uses a transformation that maps the lattice onto it-
self. However, it is equally well possible to exchange
spins (or other sorts of particles) between disjoint
systems [27]. Depending on the precise form of the
Hamiltonian, there may be a considerable freedom in
the choice of the symmetry operations defining the
cluster formation process. In common cases the lattice
model is invariant under discrete translations (if the
boundary conditions are periodic) and rotations. The
translations should be over half the system size, and
the rotations overπ : they are subject to the condition
that the transformations must be self-inverse. How-
ever, arbitrary translations may be included in other
symmetry operations such as a geometric inversion of
the lattice (a translation followed by an inversion is
another inversion; the combined operation is thus self-
inverse). Moreover, invariance under geometric inver-
sions of the lattice may apply to each Cartesian axis
independently. Finally, as described above for the chi-
ral Potts model, the symmetry properties of the lattice
may be combined with those of the lattice variables.
Possibilities to formulate a cluster algorithm that is es-
pecially tailored to the symmetry of the model under
investigation may thus arise.
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