
The Monte Carlo method is applied in
wide areas of science and engineering
to determine the properties of a broad
variety of systems. In this article, I fo-

cus on its use in the simulation of systems described
by classical equilibrium statistical mechanics—
specifically, in the simulation of model fluids.

Although the term Monte Carlo simulation might
suggest otherwise, its goal is not to mimic a fluid’s be-
havior in a dynamical sense. Similar to a molecular
dynamics (MD) simulation—which does have this
goal—a Monte Carlo program generates a sequence
of configurations of particles. However, whereas in
an MD simulation each configuration is created from
the previous one by applying Newton’s equations of
motion, in a Monte Carlo simulation there does not
have to be a physical process connecting two subse-
quent configurations. Thus, unlike in an MD simu-
lation, the resulting sequence cannot necessarily be
viewed as a “movie” of the system’s behavior. 

The introduction of nonphysical dynamics has
the important advantage that it permits the study
of systems that evolve over otherwise prohibitively

large time scales. Examples of such situations in-
clude phase transitions (for instance, melting and
freezing) and critical systems (in a fluid, criticality
corresponds to the conditions at which the distinc-
tion between a vapor and a liquid disappears). Near
a critical point, a system’s dynamical evolution be-
comes extremely sluggish, and most computer sim-
ulation methods are entirely incapable of dealing
with the slowdown. Robert Swendsen and Jian-
Shen Wang first solved this problem for model
magnets—which exhibit the same phenomenon—
in 1987 via a cluster Monte Carlo algorithm.1 Because
of the fantastic speedup their method provided, re-
searchers wanted to find a similar approach for flu-
ids, but unlike model magnets, most fluid models
don’t employ a lattice structure. The absence of an
underlying lattice breaks a symmetry that is a cru-
cial ingredient for Swendsen and Wang’s approach. 

Building on important advances2–4 that have oc-
curred since the introduction of the Swend-
sen–Wang (SW) algorithm, Jiwen Liu, a graduate
student at the University of Illinois, and I have re-
cently been able to formulate its extension to fluids
defined in continuum space.5–7 Here, I describe the
resulting highly general algorithm, its connection
to existing methods, and its advantages over con-
ventional Monte Carlo algorithms.

Conventional Monte Carlo Algorithms
To understand the conventional Monte Carlo
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method, we need a fundamental result of statistical
mechanics—namely, that a system’s thermody-
namic properties can be computed by summing
over all the possible configurations or states of the
system. Concretely, we can compute the average
value of a property A as

, (1)

where As is the value of the observable A if the sys-
tem resides in state s, and Es denotes the energy of
the corresponding state. Z is a normalization con-
stant (the partition function) and � = 1/(kBT), with kB
representing Boltzmann’s constant and T the tem-
perature. Equation 1 represents a weighted aver-
age, in which each state contributes with a weight
factor exp(–�Es)/Z.

The number of configurations a system can have
is almost always extremely large, so in numerical
calculations the sum in Equation 1 is taken only
over a subset of configurations. It might seem
straightforward to just generate a set of randomly
chosen states (also called samples) and compute 
As exp(–�Es) for each of these states, so that the sum
of these individual evaluations provides an estimate
of the actual sum. Unfortunately, this approach—
called simple sampling—doesn’t work well because
random configurations typically have a large en-
ergy, hence the Boltzmann factor exp(–�Es) is van-
ishingly small for most samples. A much better
solution is to employ importance sampling, in which
we preferentially sample states that strongly con-
tribute to the integral in Equation 1. We obtain the
most accurate estimate if we sample the states with
a probability distribution exp(–�Es)/Z.

However, even though we can compute the rel-
ative probability with which two specific states
should occur in a set of samples, we can’t compute
their absolute probability because we don’t know
the normalization constant Z. Fortunately,
Nicholas Metropolis and his colleagues8 found a
way to calculate the expectation value in Equation
1 without evaluating Z. The basic idea is to create
a sequence of states in which each state only de-
pends on the state immediately preceding it (a so-
called Markov chain). Starting from a configuration
si that has a Boltzmann factor pi, we create a new
trial configuration sj, which has a Boltzmann fac-
tor pj. The trial configuration is either accepted or
rejected: if accepted, it’s the next member in our se-
quence of states, and if rejected, then the next
member of the sequence is again si. This process is
repeated iteratively to generate a sequence of con-

figurations; acceptance or rejection is governed by
a transition probability from each possible state si to
each state sj. 

In general, finding the transition probabilities
that lead to the proper set of configurations can be
very complicated, but we can simplify the situation
by imposing a restriction called the condition of mi-
croscopic reversibility or detailed balance. This restric-
tion states that, on average, the number of
transitions from a state i to a state j is balanced by
the number of transitions from state j to state i.
Each transition probability is the product of two
factors—namely, the a priori probability �ij of gen-
erating a trial configuration sj from a configuration
si, and the acceptance probability Pij of accepting the
trial configuration as the new state. We can thus
write the detailed-balance condition as

pi�ijPij = pj�jiPji . (2)

In the simplest choice, the a priori probability is
symmetric—that is, �ij = �ji—so we have

piPij = pjPji , (3)

which we can rewrite as

, (4)

where we have used that pi and pj are given by the
Boltzmann distribution. Note that the partition
function Z has canceled out. This equation does
not uniquely define the desired acceptance proba-
bility Pij. Metropolis and his colleagues8 proposed
the solution

, (5)

which is sometimes summarized as

Pij = min[exp(–��ij), 1] , (6)

with �ij = Ej – Ei.
A valid Monte Carlo scheme not only has to obey

detailed balance, but it must also be ergodic, mean-
ing that a path exists in phase space from every state
to every other state via a succession of trial moves.
Clearly, if the trial states are chosen in such a man-
ner that certain states can never be reached, the es-
timator for a thermodynamic observable can differ
severely from the correct expectation value.

The trial configuration sj is generated via a trial
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move. If we consider an assembly of N particles, for
example, a trial move could consist of a small dis-
placement of one particle in a random direction.
(Note that a particular trial move’s probability is
embodied in the factor �ij, which in this example is
equal to �ji, as explained later.) The Metropolis cri-
terion (Equation 6) then asserts that the new state
is always accepted if the resulting configuration has
a lower energy than the original one. If the trial
configuration has a higher energy, it’s only accepted
with a probability equal to the ratio of the Boltz-
mann factors of the new and the old configuration.
In practice, this criterion is implemented by gen-
erating a random number 0 � r < 1 and accepting
the trial configuration only if r < Pij. The use of
random numbers to generate trial configurations
and to decide on their acceptance or rejection is the
origin of the phrase “Monte Carlo simulation” and
also explains why these simulations crucially de-
pend on the availability of high-quality random-
number generators.

Once we’re able to generate a sequence {s1, …,
sM} of configurations, we can calculate the expecta-
tion value of a thermodynamic property A by sam-
pling the property An for each configuration sn.
The thermodynamic average in Equation 1 is then
estimated as a simple average,

. (7)

The moves used for generating a trial configura-

tion depend on the nature of the system. A simple
fluid model is the previously mentioned example of
an assembly of N spherical particles, confined to a
certain volume. In an elementary move, one ran-
domly selected particle with position r is displaced
to a new position r� = r + �r. We can choose the dis-
placement �r as a randomly oriented vector on a
sphere with radius 0 < |�r| < �, or we can choose
the new position r � within a cube of linear dimen-
sion �, centered around the original position r. In
either case, the a priori probability �ij is symmet-
ric—that is, the probability to generate the trial
configuration from the original configuration is
identical to the probability of the reverse process.
The parameter � permits control over the simula-
tion’s efficiency. Monte Carlo algorithms with trial
moves that involve small displacements of individ-
ual particles are also called local-update algorithms.

The statistical quality of the estimate in Equa-
tion 7 depends on the number of independent sam-
ples in the sequence of configurations, thus a
simulation’s objective is to maximize the rate at
which independent configurations are generated.
If a trial configuration is generated via a small
change to the previous configuration (that is, the
parameter � governing the particle displacement
is small), the energy difference �ij will typically
also be small and the acceptance ratio large.
However, many steps will be required before we
have an independent configuration. Conversely,
if a trial configuration is generated via a big
change to the previous configuration, the se-
quence of configurations would decorrelate
quickly were it not that the typical energy differ-
ence will be large and the acceptance probability
will thus be very small.

In addition to variation of the magnitude of a
single-particle displacement, we can also try to in-
crease the rate at which configurations evolve by
moving several particles at a time. However, if the
moves of these particles are independent, this turns
out to be less efficient than a sequence of single-
particle moves.9

Lattice Cluster Algorithms
Many Monte Carlo methods can be described most
easily for lattice models. One example of such a sys-
tem is the Ising model (see the “Ising Model” side-
bar). This system can be simulated by the
Metropolis algorithm; trial moves consist of the in-
version of individual spins and are accepted or re-
jected on the basis of the change in coupling
energy. The SW algorithm1 for the Ising spin
model represents a radical departure from this sin-
gle-spin flip approach. It permits the inversion of en-
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D escribing the algorithms that underlie the geometric cluster al-
gorithm requires us to first look at the Ising model. It’s defined

on a d-dimensional lattice of linear size L (a square lattice in d = 2
and a simple cubic lattice in d = 3), with, on each vertex of the lat-
tice, a one-component spin of fixed magnitude that can point up or
down. The Hamiltonian

describes the system. The spins s take values ±1, and the sum runs
over all pairs of nearest neighbors (which are coupled via a ferro-
magnetic coupling with strength J > 0). This is a model for a mag-
netic material: each spin represents a magnetic domain. At high
temperatures, entropy will cause the spins to arbitrarily point up or
down. However, below the Curie temperature, the domains line up,
and the system becomes magnetized.

H Ising = − ∑J s si j
ij
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tire clusters of spins without suffering from the de-
crease in acceptance probability normally observed
in multiple-particle moves. Before discussing its
properties, let’s review the basic steps of the SW al-
gorithm as applied to a given configuration of spins
(see Figure 1 for an illustration):

1. A bond is formed between every pair of par-
allel nearest neighbors with a probability pij
= 1 – exp(–2�J), where J is the coupling
constant and � the inverse temperature de-
fined earlier.

2. We identify clusters by determining which
spins are connected, directly or indirectly,
via bonds. In this way, the system is divided
into clusters of parallel spins (the cluster de-
composition); the bond probability (and hence
the typical cluster size) grows with increas-
ing coupling strength �J (decreasing tem-
perature). For nonzero temperatures, each
cluster is generally a subset of all spins of a
given sign: two adjacent spins need not be-
long to the same cluster, even if they have
the same sign.

3. For each cluster of spins, we choose a spin
value ±1, which is then assigned to all spins
that belong to the cluster. Thus, all spins in
each cluster are flipped collectively with a
probability 1/2.

4. We erase the bonds—which were intro-
duced only to identify the clusters—and the
“cluster move” is complete; a new spin con-
figuration has been created. The algorithm
restarts at step 1.

This prescription relies on a mathematical rela-
tionship discovered in the early 1970s by Dutch
mathematical physicists Cees Fortuin and Piet
Kasteleyn10 that connects the Ising model and the
random-cluster model. A particularly remarkable
aspect of the cluster algorithm is that it is rejection
free: once the clusters have been formed, each one
can be flipped independently, without imposing an
acceptance criterion involving the energy change
induced by such a collective spin-reversal opera-
tion. However, the absence of an acceptance crite-
rion does not imply that a cluster flip won’t entail
an energy difference! Indeed, nothing in the algo-
rithm guarantees this property. Cluster flips result
in a sequence of configurations with different en-
ergies, but in such a way that they already appear
exactly according to the Boltzmann distribution.

Soon after the SW algorithm appeared, Ulli
Wolff 2 introduced a single-cluster variant of it.
The SW algorithm creates both small and large

clusters, and whereas the rapid evolution of the
spin configurations is mostly due to the larger clus-
ters, considerable effort is spent constructing the
smaller ones. Wolff realized that this problem can
be eliminated by avoiding the decomposition of the
spin configuration into clusters altogether—in his
algorithm, only a single cluster is formed, which is
then always flipped. If this cluster turns out to be
large, correlations are destroyed as effectively as via
the large clusters in the SW algorithm, but with-
out the effort of creating the smaller clusters that
make up the rest of the system. If the Wolff cluster
is small, not much is gained, but then again, not
much computational effort is wasted. This algo-
rithm is even more efficient than the original SW
version and—a nice bonus—even easier to imple-
ment. Let’s see how it compares with the SW algo-
rithm:

1. In the starting configuration, we select a
spin i at random.

2. We add all nearest neighbors j of this spin
to the cluster with a probability pij = 1 –
exp(–2�J ), provided spins i and j are paral-
lel and the bond between i and j hasn’t been
considered before.

3. Each spin j added to the cluster is also
placed on the stack. Once all neighbors of i
have been considered for inclusion in the
cluster, we retrieve a spin from the stack and
consider all its neighbors in turn for inclu-
sion in the cluster, following step 2.

4. Steps 2 and 3 repeat iteratively until the
stack is empty.

5. Once the cluster is completed, we invert all
spins that belong to the cluster.
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Figure 1. Illustration of the Swendsen-Wang algorithm as described
in the text. (a) Original spin configuration; the “+” signs indicate
spins that point upward (out of the plane) and “�” signs indicate
spins that point downward (into the plane). (b) Bonds (purple
lines) are formed between spins of the same sign, with a
probability that depends on the coupling strength. (c) All spins that
are connected by bonds belong to a single cluster (each color of
shading indicates a separate cluster). (d) Each cluster of spins is
flipped with a probability of 50 percent. In this example, only the
blue, green, and yellow clusters are flipped.(e) All bonds are erased
and a new spin configuration is obtained.
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Again, this is a rejection-free algorithm in the
sense that the cluster is always flipped. Just as in the
Metropolis algorithm, the cluster-construction
process uses random numbers, but the probabili-
ties pij involve energies of individual spin pairs, in
contrast with an acceptance criterion that depends
on the total energy change induced by inverting an
entire group of spins. We can simplify this imple-
mentation even further: in step 2, we can immedi-
ately invert each spin j added to the cluster, thus
guaranteeing that a spin is never added twice and
eliminating step 5.

Cluster Algorithms
for Continuum Systems
Are there also cluster Monte Carlo algorithms for
continuum systems? We will first look at the spe-
cial case of a hard-sphere liquid and then show
how we can generalize it to arbitrary fluids. To
demonstrate the efficiency of this new method,
we apply it to a suspension of colloids and
nanoparticles.

Geometric Cluster Algorithm
for Hard-Sphere Mixtures
The advantages of lattice cluster algorithms—in
particular, the suppression of critical slowdowns—
made it a widely pursued goal to generalize the SW
and Wolff algorithms to fluid systems in which par-
ticles aren’t confined to lattice sites, but can take

arbitrary positions in continuum space. Unfortu-
nately, the absence of a lattice structure breaks a
fundamental symmetry. We can interpret an Ising
model as a lattice gas, in which a spin +1 corre-
sponds to a particle, and a spin –1 corresponds to
an empty site. Accordingly, a spin-inversion oper-
ation corresponds to a particle being inserted into
or removed from the system. This particle-hole sym-
metry is absent in continuum systems: we can delete
a particle in a fluid configuration straightforwardly,
but there is no unambiguous way to transform
empty space into a particle.

In 1995, Christophe Dress and Werner Krauth3

proposed a method to efficiently generate particle
configurations for a hard-sphere liquid. In this sys-
tem, particles are represented by impenetrable
spheres (or disks, in the two-dimensional variant)
that don’t interact unless they overlap. Because of
this hard-core repulsion, a Monte Carlo algorithm
involving local moves is relatively inefficient, since
any move that generates a particle overlap is re-
jected. Figure 2 shows the geometric cluster algorithm
(GCA),3 which is designed to avoid such overlaps
while generating a new configuration by proceed-
ing as follows:

1. In a given configuration C of particles, we
choose a “pivot” at random.

2. We generate a new configuration C
~

by per-
forming a point reflection with respect to
the pivot for all particles in C.

3. We superimpose the configuration C and its
transformed counterpart C

~
, which leads to

groups of overlapping particles. The groups
generally come in pairs, except possibly for
a single group that’s symmetric with respect
to the pivot; each pair is denoted a “cluster.”

4. For each cluster, C and C
~

can exchange par-
ticles without affecting particles in other
clusters. This exchange is performed for
each cluster independently with a probabil-
ity 1/2, thus if the superposition of C and C

~

decomposes into N clusters, we have 2N

possible new configurations. The configu-
rations that are actually realized are denoted
C � and C

~
�, that is, the original configuration

C is transformed into C �; its point-reflected
counterpart C

~
is transformed into C

~
�.

5. We discard the configuration C
~
�—which is

essentially just a mirror copy of C � used for
constructing the clusters—and C � is the new
configuration that serves as the starting
point for the algorithm’s next iteration.
(Note that a new pivot location is chosen in
every iteration.)
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Figure 2. Geometric cluster algorithm for hard disks.3 From (a) the
original configuration, (b) we can create a new configuration
(orange circles) via a point reflection of all particles with respect to
a randomly chosen pivot point (small black circle). The
superposition of the original and new configuration leads to groups
of overlapping particles. This example has three pairs (or clusters)
of groups ({1, 2}, {3}, and {4, 5, 6}). The particles in any one of these
clusters can be point-reflected with respect to the pivot without
affecting the other two. In (c) the final configuration results, if we
start from the original configuration, only the particles in the third
cluster {4, 5, 6} are point-reflected. (Reprinted with permission
from “Generalized Geometric Cluster Algorithm for Fluid
Simulation.”6 Copyright 2005, American Institute of Physics.)
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Periodic boundary conditions must be employed
so that an arbitrary placement of the pivot is possi-
ble. However, other self-inverse operations are per-
missible, such as a reflection in a plane.11 In this
case, we must choose various orientations of the
plane to ensure that the algorithm is ergodic.

If we compare the GCA to lattice cluster algo-
rithms, we notice that the SW and Wolff algo-
rithms operate in the grand-canonical ensemble
(phrased in the lattice-gas interpretation, the to-
tal number of particles fluctuates during the sim-
ulation), whereas the GCA operates in the
canonical ensemble (meaning the number of par-
ticles is constant). Nevertheless, there is a re-
markable resemblance between the GCA and the
SW algorithm: we can decompose the original
configuration into clusters by exploiting a sym-
metry operation that leaves the Hamiltonian in-
variant if applied to the entire configuration. In
the SW algorithm, this is the spin-inversion op-
eration; in the GCA, it is a geometric symmetry
operation. Subsequently, we can create a new con-
figuration by moving each cluster independently
with a certain probability.

This approach is very general—for example, it
isn’t restricted to monodisperse systems, and
Krauth and his colleagues have applied it success-
fully to binary12 and polydisperse13 mixtures. In-
deed, conventional simulations of size-asymmetric
mixtures typically suffer from jamming problems,
in which a very large fraction of all trial moves is
rejected because of particle overlaps. In the GCA,
particles move in a nonlocal fashion, yet overlaps
are avoided.

The GCA’s most important limitation is the fact
that the average cluster size increases very rapidly
if the total density approaches the percolation
threshold of the combined system containing the
superposition of the configurations C and C

~
. For

high densities, each cluster spans the entire system,
so the system no longer evolves, and the algorithm
is no longer ergodic.

To emphasize the analogy with lattice cluster al-
gorithms, we can formulate a single-cluster (Wolff)
variant of the GCA:5,11

1. In a given configuration C, choose a “pivot”
at random.

2. Select a particle i as the first particle that be-
longs to the cluster. This particle moves via
a point reflection with respect to the pivot. In
its new position, we refer to the particle as i ��

3. Repeat the point reflection in step 2 itera-
tively for each particle j that overlaps with
i�. Thus, if the (moved) particle j� overlaps

with another particle k, particle k moves as
well. Note that all translations involve the
same pivot.

4. Once all overlaps have been resolved, the
cluster move is complete.

Just as in the Wolff algorithm, only a single cluster
of particles is constructed and moved, eliminating
the overhead involved in creating a point-reflected
copy of the entire system and then determining
groups of overlapping particles.

Generalized GCA for Interacting Particles
A clear difference between the GCA and other MC
algorithms is the absence of an acceptance criterion
(as in the Metropolis algorithm) or energy-depen-
dent cluster addition probability (as in the SW and
Wolff algorithms). This is because the GCA is for-
mulated only for particles that interact via hard-
core repulsions. To apply it to systems with other
types of pair potentials, Dress and Krauth3 sug-
gested accepting or rejecting entire cluster moves,
based on the energy difference involved in such
moves. For pair potentials that can be split into a
hard-core contribution and an attractive or repul-
sive tail, this is indeed possible. The cluster-con-
struction procedure takes care of the hard core by
guaranteeing that no overlaps are generated, and
the acceptance criterion accounts for the tail of the
interactions. 

For potentials without a hard core, such as a
Lennard-Jones interaction, this solution is already
less elegant. We’re forced to choose an arbitrary
“effective hard core,” which is used in the cluster
construction. The diameter of this excluded vol-
ume must be smaller than any particle separation
that would typically occur because the algorithm
won’t generate configurations in which a pair of
particles is separated by less than this distance.
More important, clusters are now constructed on
the basis of only part of the pairwise interactions,
and the evaluation of the remainder of the energy
change resulting from a cluster move is deferred
until the acceptance step. The consequences for the
computational efficiency can be very severe, be-
cause the costly rejection of a cluster move (which
involves both its construction and the evaluation of
the resulting energy change) becomes quite likely.

However, an entirely different approach is pos-
sible by carrying the analogy to lattice cluster al-
gorithms further. First, we phrase the probability
pij of adding a spin j (adjacent to a spin i) to a clus-
ter in the SW algorithm in terms of the corre-
sponding difference in the pair energy of i and j.
The relative energy �ij

SW between a spin i that be-
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longs to the cluster and a spin j that does not yet
belong to the cluster changes if j is not added to the
cluster. We can discern two different situations. If
i and j are initially antiparallel, j will never be added
to the cluster and only spin i will be inverted, yield-
ing an energy change �ij

SW = –2J < 0 that occurs
with probability unity. If i and j are initially paral-
lel, and j isn’t added to the cluster, the resulting
change in the pair energy equals �ij

SW = +2J > 0.
This occurs with a probability exp(–2�J) < 1. We
can summarize these two scenarios as

1 – pij = min[exp(–��ij
SW), 1] , (8)

so that we can write the cluster addition probabil-
ity as pij = max[1 – exp(–��ij

SW), 0]. The second step
is to phrase the GCA in precisely the same manner,
even though it’s formulated in continuum space
rather than on a lattice. Indeed, the GCA corre-
sponds to a special situation in which either �ij = 0
(once particle i has been reflected, it does not over-
lap with particle j ), leading to pij = 0, or �ij = � (af-
ter point reflection, particle i overlaps with particle
j), leading to pij = 1.

Once this connection is made, the generalization
of the GCA to arbitrary pair potentials follows in a
natural way.5 All interactions are treated in a uni-
fied manner, so there isn’t a technical distinction
between attractive and repulsive interactions or be-
tween hard- and soft-core potentials. To describe a
single-cluster variant of the generalized GCA, anal-
ogous to the Wolff algorithm, let’s assume a gen-
eral pair potential Vij(rij) that doesn’t have to be
identical for all pairs i, j (see Figure 3). A single
cluster step then proceeds as follows:

1. In a given configuration C, choose a “pivot”
at random.

2. Select a particle i at position ri as the first
particle that belongs to the cluster. This
particle moves via a point reflection with re-
spect to the pivot; in its new position, the
particle is referred to as i �, at position ri�.

3. Now consider each particle j that interacts
with i or i � for addition to the cluster, treat-
ing a particle j that interacts with i both in
its old and new positions just once. Unlike
the first particle, particle j is point-reflected
with respect to the pivot only with a proba-
bility pij = max[1 – exp(–��ij), 0], where �ij
= V(|ri� – rj|) – V(|ri – rj|).

4. Each particle j added to the cluster (that is,
moved) is also placed on the stack. Once we
have considered all particles interacting with
i or i �, a particle is retrieved from the stack
and all of its neighbors that are not yet part of
the cluster are considered in turn for inclu-
sion in the cluster as well, following step 3.

5. Steps 3 and 4 repeat iteratively until the
stack is empty. The cluster move is now
complete.

The probability pij depends only on the change in
pair energy between i and j that occurs if particle i is
point-reflected with respect to the pivot, but particle
j is not. This happens with a probability 1 – pij =
min[exp(–��ij), 1], just as for the SW algorithm in
Equation 8. If a particle interacts with multiple other
particles that have been added to the cluster, it can
thus be considered multiple times for inclusion. The
superficial similarity of the expression for the prob-
ability to a Metropolis-type acceptance criterion is
deceptive, since �ij does not represent the total energy
change resulting from the translation of particle i. In-
stead, we take other energy changes into account via
the algorithm’s iterative nature. For the special case
of hard-core repulsions, this prescription reduces to
the single-cluster variant of the GCA.

It’s possible to apply the GCA to lattice models,
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Figure 3. Two-dimensional illustration of the interacting geometric
cluster algorithm (GCA). As in Figure 2, green and orange disks
denote the particles before and after the geometric operation,
respectively, and the small black circle denotes the pivot. However,
in the generalized GCA, a single cluster is constructed, to which
particles are added with an interaction-dependent probability. From
(a) the original configuration, (b) a cluster is constructed as follows:
particle 1 is point-reflected with respect to the pivot; if, in its new
position, it has a repulsive interaction with particle 2, the latter has
a certain probability to be point-reflected as well, with respect to
the same pivot. Assuming an attractive interaction between
particles 2 and 3, particle 3 is translated as well, but only with a
certain probability. If particles 4 through 6 are not affected by these
point reflections, the cluster construction terminates. (c) The new
configuration consists of particles 1 through 3 in their new
positions and particles 4 through 6 in the original positions. We
choose a new pivot, and the procedure repeats. (Reprinted with
permission from “Generalized Geometric Cluster Algorithm for
Fluid Simulation.”6 Copyright 2005, American Institute of Physics.)
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as Jouke Heringa and Henk Blöte first did for the
Ising model;4 these researchers also devised a way
to take into account the nearest-neighbor interac-
tions between spins during cluster construction. Al-
though we can simulate this model with existing
algorithms, the approach of Heringa and Blöte per-
mits simulation in the constant-magnetization en-
semble. Their procedure is very similar to the
generalized GCA, although the presence of a lattice
makes it possible to satisfy excluded-volume inter-
actions automatically by exchanging pairs of spins.

The generalized GCA is ergodic, and detailed bal-
ance has been proven analytically.5,6 Conceptually,
the most striking point is that this algorithm is rejec-
tion free: every cluster constructed is moved (re-
flected), a fact that might be obscured because in our
prescription the cluster is moved during construc-
tion, similar to the Wolff algorithm. The central
point, however, is that the construction solely in-
volves single-particle energies, whereas a Metropo-
lis-type approach evaluates the total energy change
induced by a multiparticle move (and then frequently
rejects this move). By contrast, the GCA avoids large
energy differences by incorporating “offending” par-
ticles into the cluster with a high probability. Rejec-
tion-free algorithms were long believed to be rare
exceptions, but the generalized GCA shows that we
can, in fact, phrase them for large classes of fluids.

Lastly, although the single-cluster approach is
more efficient and easier to implement, it’s also
possible to formulate a multiple-cluster version of
the generalized GCA,6 which serves to illustrate
that the generalized GCA is a true off-lattice ver-
sion of the cluster algorithms described earlier.

The Generalized GCA’s Efficiency
Probably the most important feature of the gen-
eralized GCA for practical applications is the ef-
ficiency with which it generates uncorrelated
configurations for size-asymmetric mixtures. This
performance directly derives from the nonlocal
character of the point reflection employed. In
general, the translation of a single particle over
large distances has a very low acceptance ratio in
conventional Monte Carlo simulations, except in
extremely dilute conditions. The situation only
deteriorates for multiple-particle moves, unless
we select the particles involved in the move in a
very specific manner. The generalized GCA
makes nonlocal collective moves possible, without
any negative consequences for the acceptance ra-
tio. The resulting efficiency gain is illustrated by
means of an example taken from elsewhere5—
namely, a simple binary mixture containing 150
large particles of size �22 (at fixed volume fraction

�2 = 0.1); N1 small particles are present as well,
also at a fixed volume fraction �1 = 0.1. The effi-
ciency is determined through the autocorrelation
time (defined below), as a function of size asym-
metry. As the size �11 of these small particles
varies from �22/2 to �22/15 (that is, the size ratio
� = �22/�11 increases from 2 to 15), their number
increases from N1 = 1,200 to 506,250.

Pairs of small particles and pairs involving a large
and a small particle act like hard spheres. If no ad-
ditional interactions are introduced, the large par-
ticles will aggregate because of an entropic
phenomenon known as the depletion interaction.
Therefore, we also introduce an additional short-
range repulsion between the large particles,

. (9)

Because of this additional interaction, the system’s
energy, indicated by E(t) (the “time” t is counted
simply by the number of clusters constructed), fluc-
tuates during the simulation and makes it possible
to determine the rate at which the large particles
decorrelate. Indeed, the autocorrelation function for
the energy, defined as

, (10)

decays as exp(–t/�) and the autocorrelation time � in-
dicates how rapidly the system evolves: a large au-
tocorrelation time means a slow evolution. 

Figure 4 compares � for a conventional (Me-
tropolis) MC algorithm and the generalized GCA.
To avoid arbitrariness resulting from the computa-
tional cost involved with a single sweep or a
cluster’s construction, we assume that both
methodologies have been programmed efficiently
and express � in actual CPU time. Furthermore, �
is normalized by the total number of particles in
the system, to account for the variation in N1 as the
size ratio � increases. The autocorrelation time for
the conventional MC calculations, �MC, rapidly in-
creases with increasing � because the small parti-
cles tend to trap the large ones. Indeed, already for
� > 7 it isn’t feasible to obtain an accurate estimate
for �MC. By contrast, �GCA exhibits a very different
dependence on �. At � = 2, both algorithms require
virtually identical simulation time, which estab-
lishes that the GCA doesn’t involve considerable
overhead compared to standard algorithms (if any,
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it’s mitigated by the fact that all moves are ac-
cepted). Upon increasing �, �GCA initially decreases
until it starts to increase weakly. The nonmonoto-

nic variation of �GCA results from the changing ra-
tio N2/N1, which causes the cluster composition to
vary with �. The main points to note are, first, that
the GCA greatly suppresses the autocorrelation
time, �GCA << �MC for � > 2, with an efficiency in-
crease that amounts to more than three orders of
magnitude already for � = 7, and second, that the
increase of the autocorrelation time with � is much
slower for the GCA than for a local-move MC al-
gorithm, making the GCA increasingly advanta-
geous with increasing size asymmetry.

Sample Application: Nanoparticle Haloing
The field of colloidal stabilization offers an interest-
ing sample application of the generalized GCA. Sus-
pensions of colloidal particles, which have a diameter
in the nanometer to micrometer range, find wide-
spread application as precursors for a variety of ma-
terials, including advanced coatings and drug carriers.
An important goal is controlling the interactions be-
tween the colloidal particles, either to keep them sus-
pended in solution or to induce their aggregation. 

In recent years, a new technique has emerged14

in which an effective repulsive interaction between
colloids arises from the presence of highly charged
nanoparticles. A simple model to describe this sys-
tem must contain both the colloids and the
nanoparticles, which can differ by up to a factor 100
in diameter. This is a prototypical example of a size-
asymmetric mixture that is impossible to attack via
conventional Monte Carlo or MD simulations.
However, the generalized GCA is exquisitely suited
to address this problem. Recently, we’ve been able
to computationally reproduce the observed stabi-
lization in a model system and explain its origin.15

As Figure 5 shows, the addition of a small amount
of nanoparticles prevents aggregation of the col-
loidal particles. An important technological advan-
tage offered by these model calculations is the
ability to easily vary system parameters, such as
nanoparticle size and charge, and to predict the re-
sulting changes in the suspension’s stability.

The generalized GCA is the first gen-
eral rejection-free cluster algorithm
for off-lattice systems. Its most signif-
icant property is the fact that it can

greatly accelerate the simulation of fluids in which
the constituents exhibit a large asymmetry.

In the near future, look for a variety of exten-
sions to this algorithm. The incorporation of elec-
trostatic interactions and the treatment of phase
transitions are two areas in which work is cur-
rently in progress.

(a) (b)

Figure 5. Illustration of colloidal stabilization by means of charged
nanoparticles. (a) Twenty colloids (diameter 1�m, packing fraction
0.01) aggregate through their van der Waals attraction. The
presence of several thousands of nanoparticles (diameter 25 nm)
does not affect this aggregation. (b) The number of nanoparticles
has increased to 128,000, but they still occupy only a tiny volume
fraction of the system and are weakly attracted by the colloids,
preventing their aggregation.15
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Figure 4. Efficiency comparison between a conventional local update
algorithm (red squares) and the generalized geometric cluster
algorithm (GCA; blue squares), for a binary mixture with size ratio
�. Whereas the autocorrelation time per particle (expressed in �s of
CPU time per particle move) rapidly increases with size ratio, the
GCA features only a weak dependence on �. (Reprinted with
permission from “Rejection-Free Geometric Cluster Algorithm for
Complex Fluids.”5 Copyright 2004, American Institute of Physics.)
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