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A HYBRID METHOD FOR SYSTEMS OF CLOSELY SPACED
DIELECTRIC SPHERES AND IONS∗
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Abstract. We develop an efficient, semianalytical, spectrally accurate, and well-conditioned
hybrid method for the study of electrostatic fields in composites consisting of an arbitrary distribution
of dielectric spheres and ions that are loosely or densely (close to touching) packed. We first derive a
closed-form formula for the image potential of a general multipole source of arbitrary order outside a
dielectric sphere. Based on this formula, a hybrid method is then constructed to solve the boundary
value problem by combining these analytical methods of image charges and image multipoles with the
spectrally accurate mesh-free method of moments. The resulting linear system is well conditioned and
requires many fewer unknowns on material interfaces as compared with standard boundary integral
equation methods, in which the formulation becomes increasingly ill-conditioned and the number of
unknowns also increases sharply as the spheres approach each other or ions approach the spheres due
to the geometric and physical stiffness. We further apply the fast multipole method to accelerate
the calculation of charge–charge, charge–multipole, and multipole–multipole interactions to achieve
optimal computational complexity. The accuracy and efficiency of the scheme are demonstrated via
several numerical examples.
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1. Introduction. Electrostatic interactions arise in many areas of science and
engineering, from the surface tension of cloud droplets to protein folding, and from
soft-matter physics and environmental science to electrical engineering [1, 2]. Their
long-range nature makes efficient algorithms for electrostatic problems, which are de-
scribed by the Poisson equation, of paramount importance. Indeed, various methods
have been developed for the solution of the Poisson equation for different systems. If
the dielectric function ε(r) is a general space-dependent function, the Poisson equation
is often solved by grid-based finite-difference or finite-element methods accelerated by
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multigrid algorithms. However, these methods are generally less efficient for molec-
ular dynamics or Monte Carlo simulations of charged objects embedded in an inho-
mogeneous medium. One class of systems that has generated particularly widespread
attention is that of suspensions of spherical colloids, which serve as model systems
in self-assembly [3, 4] and also find broad applications in biology and physical chem-
istry [5]. For such specific dielectric functions, numerical methods for electrostatic
problems can be very efficient.

Here we consider the solution of the Poisson equation for a model system con-
sisting of M dielectric spheres Sj (j = 1, . . . ,M) of radius aj , with the jth sphere
centered at oj ; this is schematically shown in Figure 1. We further assume that the
spheres are neither touching nor intersecting, i.e., Si

⋂
Sj = ∅. The domain R

3 is
then divided into an interior region, Ω =

⋃
{Sj , j = 1, . . . ,M}, and an exterior region,

Ωc = R
3\Ω. The dielectric permittivity ε(r) is assumed to be constant inside each

sphere and within the surrounding medium, i.e.,

(1) ε(r) =

{
εj for r ∈ Sj , j = 1, . . . ,M ,
εs for r ∈ Ωc ,

where εj is the permittivity of the jth sphere, and εs is the permittivity of the sur-
rounding medium. We also assume that N point source charges of strength qi located
at ri ∈ Ωc, i = 1, . . . , N , are embedded in the surrounding medium, which repre-
sent small ions in the system. The electrostatic potential Φ(r) of the system is then
governed by the Poisson equation,

(2)

{
∇2Φ(r) = 0 for r ∈ Ω ,

−∇2Φ(r) = ρ(r)/εs for r ∈ Ωc ,

where ρ(r) =
∑N

i=1 qiδ(r− ri) is the source charge distribution in the exterior region,
and δ(·) denotes the Dirac delta function. On the interfaces between the spheres
and the surrounding medium we have standard electrostatic boundary conditions to
describe the continuities of the electric potential and the electric displacement [6], i.e.,

Φ(r−) = Φ(r+) ,(3)

εj
∂Φ(r−)

∂n
= εs

∂Φ(r+)

∂n
(4)

for r ∈ ∂Sj , j = 1, 2, . . . ,M . Here r− and r+ are the inner and outer limits at position
r, and n is the outward unit vector normal to the interface.

In cases with sharp dielectric interfaces (i.e., the dielectric permittivity is piecewise
constant), the boundary integral equation (BIE) method has become a standard and
popular approach [7, 8, 9]. The advantage of the BIE method is that it chooses the
representation that satisfies the Poisson equation in the bulk, and one only needs
to solve a system of integral equations on the material interfaces, thus reducing the
dimension of the problem by one. When combined with fast algorithms such as the fast
multipole method (FMM) [10, 11, 12], the BIE approach achieves optimal complexity.
Obviously, our problem is a special case of this general class, and the BIE approach
is applicable to our problem.

Another popular method that takes advantage of the spherical geometry is the
method of moments (MoM) [13, 14, 15, 16, 17]. Here the electric potential inside each
sphere is expressed as a local spherical harmonic expansion of order p, whereas the
electric potential outside the spheres is expressed as the sum of a multipole spheri-
cal harmonic expansion of a certain order on each sphere and the potential due to
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Fig. 1. Schematic illustration of a system of dielectric spheres and ions. In the hybrid scheme
(for details see section 4), when an ion is close to a sphere (e.g., q is close to sphere C), the
contribution of its image charges is added to the spherical harmonic expansion. When dielectric
spheres are close to each other (e.g., spheres A and B), the image potential of multipoles is used.

each point charge. Applying standard multipole-to-local (M2L) and particle-to-local
(P2L) operations in the FMM, the boundary conditions lead to a linear system of
size O(Mp2) which may be solved iteratively using the generalized minimum residual
(GMRES) method [18]. The advantage of the MoM, as compared with the BIE ap-
proach, is that it avoids the quadrature discretization part of the BIE approach. The
standard quadrature for weakly singular integrals (with 1

r singularity) [19] is usually
of low order on a triangular mesh for most practical applications. The quadrature
developed in [20], which can integrate weakly singular integrals to high order for a
closed smooth surface homeomorphic to a sphere, has O(p4 log p) complexity. Re-
cently, the so-called quadrature-by-expansion (QBX) scheme [21, 22, 23] has become
an area of extensive study and development. This scheme can evaluate layer po-
tentials to high accuracy and is easily coupled with the FMM. We expect that the
FMM-accelerated QBX scheme will have a great impact on the BIE approach for
solving three-dimensional problems in the near future.

However, when spheres and ions are densely packed in a medium, the induced
charge density on each sphere will be sharply peaked at the point where two spheres
are nearly touching or an ion is very close to a sphere. In this case, both the BIE
formulation and the MoM will suffer from ill-conditioning due to the dense geome-
try [24, 25]. Indeed, even if the BIE formulation is of the second kind, the condition
number of the BIE formulation increases as the spheres are getting closer and closer
to each other, and it becomes more difficult to design adaptive meshes and high-order
quadratures. Likewise, for the MoM the order p of the spherical harmonic expansion
needed to achieve a certain accuracy increases dramatically as spheres are close to
touching or the ions are very close to the spheres, making the method impractical.

On the other hand, we observe that the method of image charges can be ap-
plied to solve the problem analytically when the system contains only one sphere.
This method introduces fictitious mirror charges, placed at the opposite side of the
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interface, to satisfy boundary conditions on the interface [26, 27, 28, 29]. The image-
charge representations for the polarization potential induced by a point charge near
a conducting plane or sphere are well known in two and three dimensions [6]. For
a conducting sphere, the exact image rule for an arbitrary-order multipole source is
known as well [30]. For a dielectric sphere, the corresponding image-charge formula
is more complicated, namely a point charge plus a line charge density distributed
from the sphere center to the Kelvin point [27]. The image for a dipole source near a
dielectric sphere was found by Lindell [31] as a superposition of point charges, point
dipoles, line charges, and line dipoles. However, the image rule for a general multipole
source near a dielectric sphere does not seem to be available in the literature. More-
over, the method of image charges becomes very clumsy and impractical when the
system contains many spheres owing to multiple scattering (cf. [32, 33] for a detailed
discussion of this point).

In this paper, we derive the images of a general multipole source near a dielectric
sphere. This allows us to develop a hybrid method for the evaluation of the electro-
static field in composites consisting of arbitrarily packed dielectric spheres and ions.
The basic idea of this hybrid method is as follows. If the spheres and ions are well
separated, the MoM is coupled with the FMM and an iterative solver to take ad-
vantage of the spherical geometry and achieve optimal complexity. If ions are close
to a sphere, we add the effect of the image charges directly into the electric poten-
tial and the electric field both inside and outside the sphere. This greatly reduces
the order of the spherical harmonic expansions. Finally, if spheres are close to each
other, we modify the linear system to take into account the effect of the image multi-
pole expansions. This effectively reduces the ill-conditioning of the problem and also
significantly lowers the order of the spherical harmonic expansions. Our work is a
natural extension of earlier work on conducting spheres [24]. However, in addition,
we have modified the FMM to accelerate the calculation of interactions between mul-
tipole/local expansions on spheres. The overall scheme eliminates the most “singular”
part of the electric potential, effectively reduces the ill-conditioning of the system due
to close-to-touching geometries, reduces the total number of unknowns by lowering
the order of the spherical harmonic expansion by a large factor, and achieves optimal
complexity of the GMRES iteration through use of the FMM. This will enable parti-
cle simulations of large-scale systems, such as the equilibrium properties of dielectric
nanoparticle self-assembly [4].

This paper is organized as follows. In section 2, we collect some known results
about spherical harmonic expansions. In section 3, we derive the images of a general
multipole source near a dielectric sphere. In section 4, we present the hybrid scheme for
the rapid evaluation of electrostatic potentials and fields for a composite consisting of
arbitrarily packed spheres and ions. The performance of the scheme is illustrated via
several numerical examples in section 5. We end with a short discussion in section 6.

2. Mathematical preliminaries. We first review mathematical preliminaries
on spherical harmonics [6, 34, 35, 36, 37], which will subsequently be used in the pre-
sentation of our algorithm. To simplify the notation, we denote the infinite summation∑+∞

n=0

∑n
m=−n by

∑
n,m and the truncated pth-order spherical harmonic expansion∑p

n=0

∑n
m=−n by

∑p
n,m. We start with the definition of the spherical harmonics.

Definition 1. The spherical harmonic of degree n and order m is defined by

(5) Y m
n (θ, ϕ) =

√
(n− |m|)!
(n+ |m|)! · P

|m|
n (cos θ)eimϕ for n ≥ 0 and |m| ≤ n ,
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where θ and ϕ represent colatitude and longitude angles, respectively. Pm
n is the

associated Legendre function, defined by Rodrigues’s formula,

(6) Pm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Pn(x) ,

with Pn(x) the Legendre polynomial of degree n.

The following multipole expansion is used to represent the far field outside a
sphere containing a cluster of source charges; its truncation results in an efficient low-
rank approximation for the field in the region that is well separated from the source
sphere.

Lemma 2 (multipole expansion). Suppose N point charges of strengths {qi, i =
1, . . . , N} are located at {ri = (ρi, αi, βi), i = 1, . . . , N} in spherical coordinates.
Suppose the charges are all within a sphere of radius a centered at the origin. Then,
for any point r = (r, θ, ϕ) with r > a, the potential Φ(r) can be expressed as a multipole
expansion,

(7) Φ(r) =
∑
n,m

Mm
n

rn+1
Y m
n (θ, ϕ) ,

with coefficients

(8) Mm
n =

N∑
i=1

qiρ
n
i Y

−m
n (αi, βi) .

Alternatively, if all the target points are located in a sphere away from the sources,
the following local expansion may be used to represent the field in the target sphere;
its finite-order truncation results in an efficient low-rank approximation for the field
when the sources are well separated from the target sphere.

Lemma 3 (local expansion). Suppose N point charges of strengths {qi, i = 1, . . . ,
N} are located at {ri = (ρi, αi, βi), i = 1, . . . , N} in spherical coordinates. Suppose
the charges are all located outside a sphere of radius a centered at the origin. Then,
for any point r = (r, θ, ϕ) with r < a, the potential Φ(r) can be expanded as a local
expansion,

(9) Φ(r) =
∑
n,m

Lm
n rnY m

n (θ, ϕ) ,

where

(10) Lm
n =

N∑
i=1

qi
Y −m
n (αi, βi)

ρn+1
i

.

The induced charge due to a point source charge outside a dielectric sphere can be
expressed by the Neumann image principle [27, pp. 279–282] (for more discussion, see
also [28, 29]). We will use this formulation to treat the singularity when charges are
close to a spherical interface. We note that when the source charge is located inside
the dielectric sphere, the image structure can be derived in a very similar fashion (see,
e.g., [38]).
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Theorem 4 (Neumann image principle for single sphere). Suppose that S is a di-
electric sphere of radius a and with dielectric constant ε1, centered at the origin
o = (0, 0, 0) and surrounded by a uniform medium with dielectric constant εs. Sup-
pose further that a source charge q is located at r′ = (r′, θ′, ϕ′) outside the sphere, i.e.,
r′ > a. Then the induced electrostatic potential at any point r inside or outside the
sphere can be represented by the superposition of the potentials due to a point and a
line image charge, that is,

(11) Φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

qin
4πεs|r− r′| +

∫ ∞

r′

Qin(x)

4πεs|r− x|dx , r ∈ S ,

q

4πεs|r− r′| +
qK

4πεs|r− rK|
+

∫ rK

0

Qout(x)

4πεs|r− x|dx , r ∈ Sc ,

where x = xr′/r′, the position of Kelvin image charge rK = r′a2/r′2, and the strengths
of the point and line image charges for interior and exterior fields are, respectively,

(12)

⎧⎪⎪⎨
⎪⎪⎩

qin = 2λq , Qin(x) =
γλq

r′

(
r′

x

)λ

,

qK = −γaq

r′
, Qout(x) =

γλq

a

(rK
x

)1−λ

.

Here γ = (ε1 − εs)/(ε1 + εs) and λ = εs/(ε1 + εs) are constants.

3. Image potentials for a multipole source. In this section, we consider the
image potentials of a general multipole source outside a dielectric sphere. We will
extend the Neumann image principle, Theorem 4, to treat a multipole source, which
results in a generalized image-charge method (GICM).

Definition 5. For r �= c, a multipole source of order n and degree m (n ≥ |m|)
at position c is defined by

(13) Φ0(r) =
Mm

n

rn+1
c

Y m
n (θc, ϕc) ,

where the coefficient Mm
n describes the strength of the multipole source and (rc, θc, ϕc) =

r − c are spherical coordinates. If n = |m|, we call the multipole source a sectoral
multipole of order n.

Assume that a dielectric sphere S of radius a is centered at the origin o and a
multipole source Φ0(r) is located outside the sphere. We will derive image represen-
tations as closed-form solutions for induced potentials. We first study a special and
simple case: a unit sectoral multipole Φ0(r), i.e., M

m
n = 1 and n = |m| in (13), placed

on the +z-axis. The following theorem gives a simple and direct formula for the
image potentials Ψ(r) and Φ(r). This is an extension of the result for a conducting
sphere [24], where the interface conditions are reduced to a single Dirichlet boundary
condition.

Theorem 6 (image potentials for a sectoral multipole). Suppose S is a dielectric
sphere of radius a centered at the origin with permittivity ε1 and surrounded by a
uniform medium with permittivity εs. Let Φ0(r) be a unit sectoral multipole of order
k at c = (0, 0, h) (in Cartesian coordinates) with h > a,

(14) Φ0(r) =
1

rk+1
c

Y k
k (θc, ϕc) .
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Then the induced potentials outside and inside S are

Ψ(r) =
Ck

rk+1
g

Y k
k (θg, ϕg)−

λCk

rK

∫ rK

0

(rK/x)
1−λ−k

rk+1
x

Y k
k (θx, ϕx)dx ,(15)

Φ(r) =
1− γ

rk+1
c

Y k
k (θc, ϕc) +

λγ

h

∫ ∞

h

(h/x)λ−k

rk+1
x

Y k
k (θx, ϕx)dx ,(16)

respectively. Here γ = (ε1 − εs)/(ε1 + εs), λ = εs/(ε1 + εs), rK = a2/h, the coefficient
Ck is

(17) Ck = (−1)k+1γ
(a
h

)2k+1

,

(rg, θg, ϕg) and (rx, θx, ϕx) are the spherical coordinates of r− rK and r− x, respec-
tively, and rK and x are on the ray of c,

(18) rK = (rK , 0, 0) =
a2

h2
c and x = (x, 0, 0) .

Proof. We first expand Φ0(r) into a local expansion centered at the origin [24],

(19) Φ0(r) = (−1)k
∞∑

n=k

√(
n+ k
2k

)
rn

hn+k+1
Y k
n (θ, ϕ) .

Since Ψ outside S and Φ inside S are both harmonic, they can be expressed in terms
of harmonic series with unknown coefficients An and Bn,

Ψ(r) =
∞∑

n=k

An

rn+1
Y k
n (θ, ϕ) , r ∈ Sc ,(20)

Φ(r) =

∞∑
n=k

Bnr
nY k

n (θ, ϕ), r ∈ S .(21)

The boundary conditions at r = a are Φ0+Ψ = Φ and εs
∂(Φ0+Ψ)

∂r = ε1
∂Φ
∂r . Substituting

(19)–(21) into these boundary conditions and using the orthogonality of spherical
harmonics, we obtain a 2× 2 system for An and Bn, for each n. Solving this system
yields

(22)

An = (−1)k
[
−γ +

γ(1− γ)

1− γ + 2n

]√(
n+ k
2k

)
a2n+1

hn+k+1
,

Bn = (−1)k
(1 − γ)(2n+ 1)

1− γ + 2n

√(
n+ k
2k

)
1

hn+k+1
.

Substituting An into (20), we observe that Ψ(r) can be written as the sum of two
terms,

(23) Ψ(r) = Ψ1(r) + Ψ2(r),

where

Ψ1(r) = (−1)k+1γ

∞∑
n=k

[√(
n+ k
2k

)
a2n+1

hn+k+1

]
Y k
n (θ, ϕ)

rn+1
,(24)

Ψ2(r) = (−1)k
∞∑

n=k

[
γ(1− γ)

1− γ + 2n

√(
n+ k
2k

)
a2n+1

hn+k+1

]
Y k
n (θ, ϕ)

rn+1
.(25)
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Applying an identity similar to (19) in the reverse direction, we observe that Ψ1(r) is
the expansion of an image sectoral multipole at rK . Thus,

(26) Ψ1(r) =
Ck

rk+1
g

Y k
k (θg, ϕg) .

For Ψ2(r), we introduce the following identity:

(27)

∫ b

0

1

x

(x
b

) 1
2 (1−γ+2n)

dx =
2

1− γ + 2n
.

Using this identity with b = rK in (25) and an identity similar to (19), we obtain

(28) Ψ2(r) = −λCk

rK

∫ rK

0

(rK/x)
1−λ−k

rk+1
x

Y k
k (θx, ϕx)dx ,

and (15) follows. Since the expression (16) for the induced potential inside the sphere
can be obtained in an almost identical manner, we omit the details.

Remark 7. We make two observations. First, the image potential for the other
sectoral multipole Y −k

k (θc, φc)/r
k+1
c can be obtained directly, since it is the complex

conjugate of Y k
k ; second, when k = 0, (15) and (16) recover the classic Neumann

image formula of Theorem 4, where the image point multipole and line multipole
reduce to point and line charges, respectively.

The following differential relation connects a general multipole with the sectoral
multipole [30].

Lemma 8 (differential relation). Consider a general multipole

(29) Θk
l (r) =

Y k
l (θ, ϕ)

rl+1
,

where (r, θ, ϕ) are the spherical coordinates of r. Then

(30) Θk
l (r− hn) = Gk

l · ∂l−k

∂hl−k
Θk

k(r− hn) ,

where n = (0, 0, 1) is the unit vector along the +z-axis and

(31) Gk
l =

√
(2k)!

(l + k)!(l − k)!
.

The following identity, which generalizes the chain rule to higher-order deriva-
tives [39], is also needed in deriving the image potentials for a general multipole
source.

Lemma 9 (Faà di Bruno’s formula). If g(t) and f(t) are functions of t with a
sufficient number of derivatives, then

(32)
dm

dtm
g(f(t)) =

m∑
k=1

g(k)(f) ·Bm,k(f
′, f ′′, . . . , f (m−k+1)) .

Here Bm,k are Bell polynomials,

(33) Bm,k(x1, x2, · · · , xm−k+1)

=
∑ m!

c1!c2! · · · cm−k+1!

(x1

1!

)c1 (x2

2!

)c2
· · ·

(
xm−k+1

(m− k + 1)!

)cm−k+1

,
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where the sum is taken over all nonnegative integers {ci, i = 1, . . . ,m − k + 1} that
satisfy the constraints

m−k+1∑
i=1

ci = k ,

m−k+1∑
i=1

ici = m .

In particular, when xi = i!, i = 1, . . . ,m− k + 1,

(34) Bm,k(x1, x2, . . . , xm−k+1) =

(
m
k

)(
m− 1
k − 1

)
(m− k)! .

We are now in a position to state our main analytical result, namely a closed-form
solution of image potentials for a general multipole source outside a dielectric sphere.

Theorem 10 (image potentials for a general multipole). Suppose S is a dielec-
tric sphere of radius a centered at the origin with permittivity ε1 and surrounded by
a uniform medium with permittivity εs. Let Φ0 be a unit multipole source of general
order and degree at c = (0, 0, h) (in Cartesian coordinates) with h > a,

(35) Φ0(r) =
1

rl+1
c

Y k
l (θc, ϕc) , l ≥ k .

Then the induced potentials outside and inside S are

Ψ(r) =

l∑
j=k

Nk
lj

[
1

rj+1
g

Y k
j (θg, ϕg)−

λ

rK

∫ rK

0

(rK/x)1−λ−j

rj+1
x

Y k
j (θx, ϕx)dx

]
,(36)

Φ(r) =
(1− γ)

rl+1
c

Y k
l (θc, ϕc) +

λγ

h

∫ ∞

h

(h/x)λ−l

rl+1
x

Y k
l (θx, ϕx)dx ,(37)

respectively. Here λ, γ, rK , (rg , θg, ϕg), and (rx, θx, ϕx) are the same as in Theorem
6, and the coefficients Nk

lj (j = k, . . . , l) are defined by
(38)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nk
lk = (−1)l+1γ

(l + k)!

(2k)!

a2k+1

hl+k+1
Gk

l ,

Nk
lj =(−1)l+1γ

a2j+1

hl+j+1

√
(j + k)!(j − k)!

(2k)!
Gk

l

·
l−k∑

i=j−k

(l + k − i)!(i− j + k)!

(2k)!

(
l − k
i

)(
i

j − k

)(
i− 1

j − k − 1

)
,

j = k + 1, . . . , l .

Proof. Let n = (0, 0, 1). Clearly, Φ0(r) = Θk
l (r−hn). Applying Lemma 8, we may

express the general multipole source in terms of the derivative of a sectoral multipole,

(39) Φ0(r) = Gk
l

∂l−k

∂hl−k
Θk

k(r− hn) .

The induced potential for the sectoral multipole source Θk
k(r− hn) has already been

obtained in Theorem 6. By linearity and (39), the induced potential of the general
multipole is simply the derivative of the induced potential of the sectoral multipole
source. Thus, the induced potential outside the sphere is

(40) Ψ(r) = Ψ1(r) + Ψ2(r),
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where

Ψ1(r) = (−1)k+1γGk
l ·

∂l−k

∂hl−k

{(a
h

)2k+1 1

rk+1
g

Y k
k (θg, ϕg)

}
,(41)

Ψ2(r) = (−1)kγGk
l ·

∂l−k

∂hl−k

{(a
h

)2k+1 λ

rK

∫ rK

0

(rK/x)1−λ−k

rk+1
x

Y k
k (θx, ϕx)dx

}
.(42)

We note that Ψ1 is almost identical to the image potential of the multipole source
outside a conducting sphere, except for the factor γ. Applying the result of [24], we
obtain

(43) Ψ1(r) =

l∑
j=k

Nk
lj

rj+1
g

Y k
j (θg, ϕg) .

We now analyze Ψ2. We first rewrite Ψ2,

(44) Ψ2(r) = Gk
l · ∂l−k

∂hl−k
{u(h)f(g(h))} ,

where

(45) u(h) = (−1)kγ
(a
h

)2k+1 λ

rK

and

(46) f(g(h)) =

∫ g(h)

0

[
g(h)

x

]1−λ−k
1

rk+1
x

Y k
k (θx, ϕx)dx

with

(47) g(h) = rK =
a2

h
.

Applying the Leibniz rule to (44) leads to

(48) Ψ2(r) = Gk
l

l−k∑
i=0

(
l − k
i

)
f (i)(g(h))u(l−k−i)(h) .

Applying Faà di Bruno’s formula (Lemma 9) to f (i)(g(h)), we have

(49)
Ψ2(r) = Gk

l

l−k∑
i=0

i∑
m=1

(
l − k
i

)
u(l−k−i)(h)f (m)(g)Bi,m[g′, g′′, . . . , g(i−m+1)]

+Gk
l u

(l−k−i)(h)f(g(h)) .

It is straightforward to compute u(l−k−i)(h),

(50) u(h)(l−k−i) = (−1)l−iγλ
(2k)!

(k + l − i)!

a2k−1

hk+l−i
.

f (m)(g) can be computed similarly, although the procedure is much more lengthy.
Substituting the expression for f (m)(g) and (50) into (49) and simplifying the resulting
expression, we find that

(51) Ψ2(r) = −
l∑

j=k

λNk
lj

rK

∫ rK

0

(rK/x)1−λ−j

rj+1
x

Y k
j (θx, ϕx)dx ,
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where the coefficients Nk
lj are given in (38). Substitution of (43) and (51) into (40)

yields (36). The induced potential (37) inside the sphere can be obtained in a similar
manner.

Remark 11. When l = k, (36) and (37) reduce to the image potentials for a
sectoral multipole, (15) and (16). When l = 1, k = 0, (36) and (37) reproduce the
classic result for the image potentials of a dipole source outside a dielectric sphere [31].

Remark 12. We could alternatively use the following recurrence relations to cal-
culate the coefficients Nk

lj :

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nk
lk = (−1)l+1γ

√(
l + k
l − k

)
a2k+1

hl+k+1
Gk

l ,

Nk
lj = (−1)l+1γ

√(
l + j
l + k

)(
l + j
l− k

)
a2j+1

hl+j+1
Gk

l

−
j−k∑
i=1

Nk
j−i

√(
j + k
i

)(
j − k
i

)(
a2

h

)i

, j = k + 1, . . . , l .

However, this does not improve the speed in numerical simulations, where all combi-
natorial factors are precomputed and tabulated.

Remark 13. Equations (36)–(37) contain singular integrals with a xλ−1 singular-
ity at the origin (for the integral in (37), the change of variables h/x = t should be
made first). We apply the Gauss–Jacobi quadrature to discretize these integrals. In
practice, 2–5 quadrature points (depending on the distance of the source point to the
sphere) suffice to obtain 6-digit accuracy.

Remark 14. We have only presented the case in which the multipole source is
located on the +z-axis. For a general source location c = (xc, yc, zc) outside the
sphere, the following procedure is applied to find the image potentials. First, the
coordinate system is rotated so that the multipole source is located at (0, 0, |c|);
second, the corresponding rotation matrices are applied to the multipole expansion
coefficients [40, pp. 275–277]; third, the generalized image formula in Theorem 10 is
used to obtain the image multipole coefficients for the rotated multipole source; and
finally, the image multipole coefficients are rotated back to the original coordinate
system.

4. Numerical algorithms. We present the hybrid numerical scheme for sys-
tems of dielectric spheres and ions (Figure 1). We denote the total number of spheres
byM , the total number of point charges by N , and the order of the spherical harmonic
expansion by p.

4.1. Case I: Well-separated spheres and ions. Here we present the pro-
cedure of the MoM for solving (2)–(4). This method is efficient when all dielectric
spheres and point charges are well separated.

The potential in the exterior region can be written as a sum of two parts,

(53) Φ(r) = Φ0(r) + Ψ(r) , r ∈ Ωc ,

where Φ0(r) is the direct Coulomb contribution due to the point sources,

(54) Φ0(r) =

N∑
i=1

qi
4πεs|r− ri|

,
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and Ψ(r) is the induced potential due to the presence of dielectric spheres. It is a har-
monic function and can be represented in terms of (truncated) multipole expansions,

(55) Ψ(r) =

M∑
j=1

p∑
m,n

Bj
nm

rn+1
j

Y m
n (θj , ϕj) ,

where (rj , θj , ϕj) are the spherical coordinates of r − oj for j = 1, 2, . . . ,M , respec-
tively. Similarly, the electrostatic potential inside each sphere can be represented by
a (truncated) local expansion,

(56) Φ(r) =

p∑
m,n

Aj
nmrnj Y

m
n (θj , ϕj) , r ∈ Sj for j = 1, . . . ,M .

Equations (53)–(56) represent a general solution of the studied problem with the
moments of the expansions, Aj

nm and Bj
nm, to be determined.

For the kth sphere, we first represent Φ0 in terms of the local expansion,

(57) Φ0(r) =

p∑
m,n

Ck
nmrnkY

m
n (θk, ϕk)

with

(58) Ck
nm =

N∑
i=1

qi
4πεs

Y −m
n (αik, βik)

ρn+1
ik

.

To simplify our notation, we denote Ak = {Ak
nm, n = 0, . . . , p;m = −n, . . . , n}, and

similarly for Bk and Ck. Substituting the expansions (55)–(57) into the boundary
conditions (3)–(4), we obtain

(59) Ck
nm +

Bk
nm

a2n+1
k

+

M∑
j=1
j �=k

(
T kj
M2LB

j
)
nm

= Ak
nm ,

(60) Ck
nm − (n+ 1)

n

Bk
nm

a2n+1
k

+
M∑
j=1
j �=k

(
T kj
M2LB

j
)
nm

=
εk
εs
Ak

nm

for n = 0, . . . , p; m = −n, . . . , n; k = 1, . . . ,M . Here T kj
M2L denotes the standard

multipole-to-local (M2L) translation operator which translates the multipole expan-
sion at the jth sphere to the local expansion at the kth sphere [10, 35].

When p is small, the linear system (59)–(60) is well-conditioned and may be solved
efficiently using iterative solvers such as GMRES.

Remark 15. For some applications, one is interested in the exterior potential only.
Eliminating Ak from (59)–(60) leads to a linear system for Bk,

(61)
(n+ 1)εs + nεk

n(εs − εk)

Bk
nm

a2n+1
k

−
M∑
j=1
j �=k

(
T kj
M2LB

j
)
nm

= Ck
nm , k = 1, . . . ,M .

This will halve the size of the linear system.
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Remark 16. The calculation of the coefficients Ck
nm is carried out as follows. First,

compute Φ0 at Mp2 grid points (i.e., p2 points for each sphere) using the FMM; this
step requires O(N +Mp2) operations. Second, use the spherical harmonic transform
to evaluate Ck

nm for each k; this step costs O(Mp3) operations.

Remark 17. Since all M spheres interact, the system matrix is dense and the
matrix–vector product in each iteration takes O(M2p3) operations if the naive direct
method is used. However, one can easily modify the FMM to reduce the cost to
O(Mp3), i.e., linear complexity with respect to the total number of dielectric spheres.
See, e.g., [41, 42] for details.

4.2. Case II: Some ions close to dielectric spheres. The order p of the
spherical harmonic expansion will increase sharply if some ions are very close to a
sphere. In this case, we use the method of image charges to take into account the
effect of nearby charges. Specifically, we modify the potential inside the kth sphere,

(62) Φ(r) =

p∑
m,n

Ak
nmrnkY

m
n (θk, ϕk) + Φ

(in)
0k (r) , r ∈ Sk ,

and the potential in the exterior region,

(63) Φ(r) = Φ0(r) +

M∑
k=1

p∑
m,n

Bk
nm

rn+1
k

Y m
n (θk, ϕk) +

M∑
k=1

Φ
(ex)
0k (r) , r ∈ Ωc ,

where Φ
(in)
0k and Φ

(ex)
0k are the image potentials inside and outside Sk due to the point

charges that are close to Sk. The remaining procedure is then identical to that of the
MoM (section 4.1).

Remark 18. We consider a point charge close to a sphere if the distance of the
charge to the sphere surface is less than η(ε)a. Here η(ε) is a parameter depending
on the accuracy ε required by the application. For 6-digit accuracy, we choose η = 5;
for 2-digit accuracy, η = 1 should be sufficient for most practical applications.

Remark 19. We only add the contribution of the image charges to the system
when point charges are close to a sphere. Therefore, the total number of charges in
the system is O(N +M) for most practical applications and hence does not change
the complexity of the algorithm.

Remark 20. Similar to the discretization of line image multipoles, we discretize
the line image charges in (11) using the Gauss–Jacobi quadrature. The infinite integral
in (11) can also be treated similarly to that of image multipoles, as stated in Remark
13.

4.3. Case III: Dielectric spheres close to each other. If dielectric spheres
are close to each other, we use the image potential of multipoles to reduce the ill-
conditioning of the linear system. Assume that the jth sphere is close to the kth
sphere. Then the multipole expansion outside the kth sphere has coefficients

(64) Bk +R(ex)
kj Bj ,

and the local expansion inside the kth sphere has coefficients

(65) Ak +R(in)
kj Bj ,
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where R(ex)
kj Bj are the multipole expansion coefficients of the image potential outside

the kth sphere due to the multipole source Bj on the jth sphere, and R(in)
kj Bj are

the local expansion coefficients of the image potential inside the kth sphere due to
the same multipole source. Likewise, we need to add the contribution of the image
multipoles to the jth sphere as well. All these coefficients can be computed using
Theorem 10 and Remark 14.

For the general case, we define csk as the set of indices of the spheres that are close
to the kth sphere. That is,

(66) csk = {l
∣∣ |ol − ok| − (al + ak) < ηsph , l ∈ {1, . . . ,M}} ,

where ηsph is the surface-to-surface distance parameter for pairs of close spheres. This
changes (64)–(65) as follows:

(67) Bk +
∑
j∈csk

Rex
kjB

j ,

(68) Ak +
∑
j∈csk

Rin
kjB

j .

We then use the boundary conditions to set up a linear system for the coefficients Ak

and Bk (k = 1, . . . ,M).

Remark 21. In the case of symmetric unit spheres, generally ηsph = 4 can reach
6-digit accuracy. For 2-digit accuracy, ηsph = 1 should be sufficient.

Remark 22. It is clear that when the image potentials of point charges are added,
the only change in the matrix is a reduction of the order p of the spherical harmonic
expansion. However, when the image potentials of multipoles are added, the system
matrix changes dramatically even if p is kept the same. This is exactly what one
would like to achieve, since the original matrix would be ill-conditioned for the cases
where some spheres are close to each other.

4.4. The hybrid method. We are now in a position to describe the hybrid
method for solving the Poisson equation in a composite consisting of a collection
of arbitrarily spaced dielectric spheres and ions. It combines the MoM with the
classical image-charge method (CICM) for close point–interface interactions and the
GICM for close interface–interface interactions, and it uses the FMM to speed up the
computation of particle–particle and sphere–sphere interactions. The resulting linear
system is well-conditioned for most practical applications, and the overall algorithm
achieves optimal complexity.

Remark 23. We use the publicly available software package FMM3DLIB [43] for
the harmonic FMM. This package is reasonably fast but not highly optimized. It
assumes, for example, that all charge strengths are complex, and uses “point-and-
shoot” translation operators instead of diagonal translation operators [10].
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We now summarize the hybrid method in Algorithm 1.

Algorithm 1. Hybrid method for systems of dielectric spheres and ions.

Require: Given a spherical harmonic expansion order p, dielectric constant εs for
the medium, sphere radius ai, sphere centers oi and dielectric constant εi (i =
1, . . . ,M), ion locations rj and charges qj (j = 1, . . . , N), compute the induced
Coulomb potential.

1: Construct a set of quadrature nodes and weights on each sphere (Gauss–Legendre
nodes along the θ direction, and equispaced points along the ϕ direction, with 2p
points in each direction) to be used for the spherical harmonic transform.

2: With all sphere centers and ion locations as input, build an adaptive oct-tree. For
each sphere k, find the set of spheres csk and the set of point charges cpk that are
close to it. For most applications, both csk and cpk are O(1).

3: Use the FMM to evaluate, on all spherical grids, the potentials generated in the
exterior region by all point charges and their images inside the spheres. This step
requires O(N +Mp2) operations. Evaluate on each spherical grid the potential
generated inside this sphere by the image charges outside it. This step costs at
most O(Mp2) for most applications, since each cpk is O(1).

4: Apply a spherical harmonic transform to obtain the multipole and local expansion
coefficients due to point charges and possibly their image charges. This step
produces the right-hand side of the linear system and requiresO(Mp3) operations.

5: Use an iterative solver such as GMRES to solve the linear system and obtain
the local and multipole coefficients Ak and Bk. The sphere–sphere interactions,
which involve the M2L translation operators, are accelerated by the FMM and
have O(Mp3) complexity. The action on the multipole coefficient Bk due to the
presence of image multipoles is computed via Theorem 10 and Remark 14 and
has at most O(Mp3) complexity as well.

6: Use the FMM again to evaluate the potential or the field at the desired target
locations. This step has O(N +Mp2 +NT ) complexity, with NT the number of
target points.

5. Numerical examples. In this section, we present numerical results to demon-
strate the well-conditioning, accuracy, and timing performance of Algorithm 1. We
have implemented our algorithm in C with OpenMP to parallelize some for loops.
In all the numerical tests, the required precision for GMRES is set to 10−9 and the
precision for the FMM is set to 10−9 as well. All spheres are of the same size with
radius a rescaled to 1. The dielectric constant outside the spheres is taken to be 80
to represent the water solvent and inside the spheres is equal to 2 (to represent, e.g.,
hydrocarbon nanoparticles). We set the closeness parameter ηsph to 4 for sphere–
sphere interactions. We calculate the total potential energy of the system to verify
the accuracy. The total energy is defined as

(69) Etotal =

N∑
i=1

qi
2
Φ(ri),

and the potential is expressed as
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(70) Φ(r) = Φ0(r) +

M∑
k=1

Φ
(ex)
0k (r) +

M∑
k=1

p∑
m,n

⎛
⎝Bk

nm +
∑
j∈csk

Rex
kjB

j

⎞
⎠ Y m

n (θk, ϕk)

rn+1
k

,

where the second term comes from ions close to surfaces, and the second term in
the bracket is due to the close-sphere pairs. For all tests, the reference solutions
are obtained via a self-consistent check with 10-digit precision (in some cases also
cross-checked against the results of the simple MoM), and the relative errors are then
computed to show the accuracy. The timing results are obtained on a 64-core machine
(4 AMD Opteron Processors Model 6272 2.1 GHz with 16 cores each), where the
number of threads is set to 60. For the first three examples, we study the effectiveness
of the hybrid method in reducing the order p of the spherical harmonic expansion and
the number of iterations for GMRES when point charges are close to spheres or
spheres are close to each other. For cases involving random arrangements of charges
(Examples 2–5), we average over four random configurations.

In the following tables, the first column lists the smallest distance between a point
and a sphere or between two spheres. We separately list the performance of the MoM
and the hybrid method, where p is the order of the spherical harmonic expansion,
#iter is the number of iterations needed by GMRES, and the last column lists the
error in the total electrostatic energy of the systems. For the hybrid method, the
minimal spherical harmonic expansion order to achieve 6-digit accuracy p = pmin is
listed.

Example 1: Source charge approaching an interface. We consider a pos-
itive unit source charge that approaches one of the interfaces in a system of two
neutral, well-separated unit dielectric spheres. The spheres are centered at (±6, 0, 0).
A unit point charge is placed at rs = (5 −Δ, 0, 0) with Δ > 0; that is, the distance
between the point charge and the right-hand sphere is Δ. We vary Δ from 5 to
10−6 and compare the conventional MoM and our scheme, which in this case is the
MoM/CICM method. We list the order to achieve 6-digit accuracy in Table 1, and
also the number of GMRES iterations required for both methods as a comparison. If
the MoM does not reach the accuracy requirement after p = 350, we omit the number
of iterations and the accuracy, since for p = 350 there are 8p2 ≈ 106 unknowns (with
Ak

nm eliminated from the system and solving for Bk
nm (61) only, per Remark 15) and

the simple MoM becomes very inefficient.
Table 1 indicates that, as the source charge approaches the interface, the hybrid

method can reach an accuracy of six digits with p = 4 even when the distance Δ is as
small as 10−6. For the MoM, to reach the accuracy, the order increases rapidly with
decreasing Δ, and it becomes greater than 350 when Δ ≤ 0.01. Moreover, the hybrid
method takes at most six GMRES iterations to reach convergence for the entire range
of charge–surface separations examined, whereas for the MoM the number of GMRES
iterations grows with decreasing Δ.

Example 2: Two spheres approaching each other. In this example, we
randomly place 100 positive monovalent ions around two neutral dielectric spheres
of unit radius within a cube of edge length 20 and vary the surface separation δ
between the spheres from 10 to 10−6. We calculate the potential energy via the
conventional MoM and via the MoM/GICM hybrid method to 6-digit accuracy. In
the MoM, the order p of the spherical harmonic expansion increases rapidly as the two
spheres approach each other; see Table 2. By contrast, for the hybrid method, p is
maintained at 6 and the number of GMRES iterations increases only moderately even
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Table 1

Accuracy and convergence of the MoM and the hybrid method for the case where a source charge
is approaching one of two spherical interfaces. We vary the source–interface nearest distance Δ while
retaining at least 6-digit accuracy in the electrostatic energy for both methods.

Method of moments Hybrid method
Δ p # iter Error pmin # iter Error
5 6 6 1.3E-9 4 4 6.1E-10
2 10 9 4.0E-8 4 6 1.9E-9
1 15 10 7.9E-8 4 6 3.2E-9
0.5 25 11 1.4E-7 4 6 5.6E-8
0.2 45 12 1.3E-7 4 6 8.8E-8
0.1 70 12 2.9E-6 4 6 9.4E-8

1.0E−2 > 350 - - 4 6 1.2E-7
1.0E−3 > 350 - - 4 6 2.7E-7
1.0E−4 > 350 - - 4 6 3.2E-7
1.0E−5 > 350 - - 4 6 4.9E-7
1.0E−6 > 350 - - 4 6 7.6E-7

Table 2

Accuracy and convergence of the hybrid method for the case when two spheres are approaching
each other, with 100 source charges surrounding them. δ is the distance between the two spheres.

Method of moments Hybrid method
δ p # iter Error pmin # iter Error
10 120 12 2.0E-6 6 5 4.9E-8
5 180 13 3.5E-7 6 7 6.0E-8
2 300 14 3.7E-7 6 8 9.8E-8
1 >350 - - 6 9 1.3E-7
0.5 >350 - - 6 9 2.6E-7
0.2 >350 - - 6 10 3.3E-7
0.1 >350 - - 6 11 4.3E-7

1.0E-2 >350 - - 6 11 7.6E-7
1.0E-3 >350 - - 6 12 7.8E-7
1.0E-4 >350 - - 6 12 7.7E-7
1.0E-5 >350 - - 6 12 8.1E-7
1.0E-6 >350 - - 6 12 8.0E-7

when the spheres are as close as 10−6. This illustrates how the hybrid method is able
to very effectively reduce the ill-conditioning of the system due to close-to-touching
geometries.

Example 3: Three spheres approaching each other. We now consider an
even more challenging case. We place 100 positive monovalent ions around three
neutral unit spheres that are located on the vertices of an equilateral triangle and let
the spheres approach each other simultaneously. The spheres and ions are contained
within a cube of edge length 20. The distance between each pair of spheres ranges
from 10 to 10−6. This is an even more stringent test for the hybrid method, since at
first sight it may seem that the image potentials of the multipole expansions can only
ameliorate the ill-conditioning of the interaction between two close spheres.

Table 3 lists the numerical results for both the MoM and the hybrid method.
For the MoM, the order p of the spherical harmonic expansion increases again with
decreasing separation, but now even more sharply than in Table 2. Meanwhile, for the
hybrid method, p remains equal to 8 even when all three spheres are nearly touching.
The number of GMRES iterations is less than 20 even in the worst case. This example
clearly demonstrates that our hybrid method can reduce the ill-conditioning of the
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Table 3

Accuracy and convergence of the hybrid method for the case of three spheres placed on the
vertices of an equilateral triangle, with 100 source charges surrounding them. δ is the distance
between each pair of spheres.

Method of moments Hybrid method
δ p # iter Error pmin # iter Error
10 170 14 2.0E-7 8 6 2.9E-8
5 340 16 6.9E-7 8 7 5.0E-8
2 > 350 - - 8 9 9.3E-8
1 > 350 - - 8 10 2.5E-7
0.5 > 350 - - 8 11 3.3E-7
0.2 > 350 - - 8 13 2.9E-7
0.1 > 350 - - 8 14 3.9E-7

1.0E-2 > 350 - - 8 17 8.1E-7
1.0E-3 > 350 - - 8 19 8.9E-7
1.0E-4 > 350 - - 8 18 9.1E-7
1.0E-5 > 350 - - 8 19 8.8E-7
1.0E-6 > 350 - - 8 18 8.8E-7

system very effectively even when more than two spheres are close to each other.

Example 4: Timing results for many point charges. To demonstrate the
efficiency of the FMM in the hybrid method, we consider the following system. We
place eight unit spheres on a cube and N point charges around them. The spheres are
centered at the vertices of a cube of size 2+10−6; i.e., the smallest surface separation
between two spheres is only 10−6. We vary the number of point chargesN from 103 to
107. Figure 2 shows the total time (in seconds) required to compute the electrostatic
energy. In combination with the FMM, the hybrid method displays linear scaling.
For a system of 10 million particles, the FMM yields an acceleration by four orders
of magnitude compared to direct summation, reducing the calculation from 6 × 105

seconds to 50 seconds.

Example 5: Timing results for many dielectric spheres. To demonstrate
that the hybrid method, when combined with the FMM, scales well not only with the
number of point charges but also with the number of dielectric spheres, we randomly
place M dielectric unit spheres (M ranging from 2 to 104) in a cubic box. The box
size is adapted for different M so that the volume fraction of the dielectric spheres
is kept constant at 20%. In addition, we randomly place N = 1000 point charges
around the dielectric interfaces. Figure 3 shows the total computing time as a func-
tion of M , which again agrees well with linear scaling. For 10000 dielectric spheres,
the hybrid method with the FMM is able to compute the total electrostatic energy
in approximately 220 seconds, compared to 5 × 103 seconds for the hybrid method
combined with direct summation.

6. Summary and conclusions. In conclusion, we have analytically generalized
the method of images for point charges near dielectric spheres to arbitrary multipole
expansions. We then combined this method of image multipoles with the MoM and
the method of image charges to construct a hybrid method for the solution of the
Poisson equation for systems consisting of closely spaced dielectric spheres and ions.
Our method removes the ill-conditioning of such systems due to close charge–surface
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Hybrid method with FMM
Hybrid method with direct sum

Fig. 2. Total computing time for the evaluation of the potential energy of N point charges
near eight dielectric unit spheres placed on the vertices of a cube. The cube has side length 2 +
10−6; i.e., the surface separation between two neighboring spheres is 10−6. The accuracy is set to
10−6. In conjunction with the FMM, the hybrid method (blue open symbols) displays linear scaling
(dashed line) with the number of particles, greatly accelerating the calculation compared with direct
summation (red closed symbols).
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Fig. 3. Total computing time for the electrostatic energy of a single configuration as a function
of the number of dielectric spheres M . These spheres are randomly placed inside a cubic box, at a
fixed volume fraction of 20%. In addition, 1000 point charges are generated, randomly surrounding
the spheres. The required accuracy is set to 10−6. When combined with the FMM, the hybrid method
displays linear scaling behavior.

and interface–interface interactions. Through combining this method with the FMM
to speed up the ion–ion and sphere–sphere interactions we achieve O(N + M) (i.e.,
optimal) complexity for systems with N ions and M dielectric spheres.

When the particles are not of spherical shape, we anticipate that a boundary
integral formulation will be possible that—when combined with the FMM, the recently
developed QBX method, and adaptive mesh refinement—will be capable of efficiently
and accurately solving systems of large numbers of arbitrarily shaped dielectric objects
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and charged particles.
In addition, we are currently applying the hybrid method proposed here in large-

scale studies of the role of dielectric effects in nanoparticle self-assembly.
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[39] L. F. A. Arbogast, Du calcul des dérivations, Levrault, Strasbourg, 1800.
[40] L. C. Biedenharn, J. D. Louck, and P. A. Carruthers, Angular Momentum in Quantum

Physics: Theory and Application, Addison–Wesley, Reading, MA, 1981.
[41] Z. Gimbutas and L. Greengard, Fast multi-particle scattering: A hybrid solver for the

Maxwell equations in microstructured materials, J. Comput. Phys., 232 (2013), pp. 22–
32, http://dx.doi.org/10.1016/j.jcp.2012.01.041.

[42] A. J. Hesford, J. P. Astheimer, L. Greengard, and R. C. Waag, A mesh-free approach
to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal
translation operators, J. Acoust. Soc. Am., 127 (2010), pp. 850–861, http://dx.doi.org/10.
1121/1.3277219.

[43] FMMLIB3D software suite, http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html.

http://dx.doi.org/10.1137/120900587
http://dx.doi.org/10.1137/120900587
http://dx.doi.org/10.1016/j.jcp.2013.06.027
http://dx.doi.org/10.1137/120902859
http://dx.doi.org/10.1137/120902859
http://dx.doi.org/10.1137/S0036139999364992
http://dx.doi.org/10.4208/cicp.210612.240113a
http://dx.doi.org/10.4208/cicp.210612.240113a
http://dx.doi.org/10.1137/090774288
http://dx.doi.org/10.1093/qjmam/41.3.395
http://dx.doi.org/10.1029/91RS02255
http://dx.doi.org/10.1016/j.jcp.2015.03.019
http://dx.doi.org/10.1063/1.4890077
http://dx.doi.org/10.1088/0305-4470/10/8/004
http://dx.doi.org/10.1016/j.jcp.2006.10.019
http://dx.doi.org/10.1016/j.jcp.2006.10.019
http://dx.doi.org/10.1016/j.jcp.2012.01.041
http://dx.doi.org/10.1121/1.3277219
http://dx.doi.org/10.1121/1.3277219
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html

	Introduction
	Mathematical preliminaries
	Image potentials for a multipole source
	Numerical algorithms
	Case I: Well-separated spheres and ions
	Case II: Some ions close to dielectric spheres
	Case III: Dielectric spheres close to each other
	The hybrid method

	Numerical examples
	Summary and conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


