1994 1995 1996 1997 1998 1999
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
2020 2021 2022 2023 2024
Conference Proceedings Theses


Journal publications


2024

  1. Anisotropic self-assembly of polarizable colloidal mixtures
    Ziwei Wang, Zecheng Gan, Shidong Jiang, Zhenli Xu and Erik Luijten*

2023

  1. Influence of pore length on hydrogenolysis of polyethylene within a mesoporous support architecture
    Max Meirow, Akalanka Tennakoon, Xun Wu, Jarod Willmon, Daniel Howell, Wenyu Huang*, Aaron D. Sadow* and Erik Luijten*
    J. Phys. Chem. C 127, 23805–23813 (2023).
  2. Treasuring trash: Pt/SrTiO3 catalysts process plastic waste into high-value materials
    Ian L. Peczak, Robert M. Kennedy, Ryan A. Hackler, Byeongdu Lee, Max Meirow, Erik Luijten, Kenneth R. Poeppelmeier and Massimiliano Delferro
    Matter 6, 3296–3321 (2023).
  3. Two mesoporous domains are better than one for catalytic deconstruction of polyolefins
    Akalanka Tennakoon, Xun Wu, Max Meirow, Daniel Howell, Jarod Willmon, Jiaqi Yu, Jessica V. Lamb, Massimiliano Delferro, Erik Luijten, Wenyu Huang and Aaron D. Sadow
    J. Am. Chem. Soc. 145, 17936–17944 (2023).
  4. Phase separation and ripening in a viscoelastic gel
    Tine Curk and Erik Luijten
    Proc. Natl. Acad. Sci. USA 120, e2304655120 (2023).
  5. Mechanistic insights into processive polyethylene hydrogenolysis through in situ NMR
    Tommy Yunpu Zhao, Max Meirow, Akalanka Tennakoon, Xun Wu, Alexander L. Paterson, Long Qi, Anne M. LaPointe, Jessica V. Lamb, Takeshi Kobayashi, Massimiliano Delferro, Aaron D. Sadow, Wenyu Huang, Erik Luijten*, and Frédéric A. Perras*
    Macromolecules 56, 4287–4295 (2023).
  6. Unravelling crystal growth of nanoparticles
    Binbin Luo, Ziwei Wang, Tine Curk, Garrett Watson, Chang Liu, Ahyoung Kim, Zihao Ou, Erik Luijten* and Qian Chen*
    Nature Nanotechnol. 18, 589–595 (2023).
  7. Coarse-grained modeling of polymer cleavage within a porous catalytic support
    Max Meirow and Erik Luijten*
    ACS Macro Lett. 12, 189–194 (2023).

2022

  1. Seeking regularity from irregularity: unveiling the synthesis–nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning
    Lehan Yao, Hyosung An, Shan Zhou, Ahyoung Kim, Erik Luijten and Qian Chen
    Nanoscale 44, 16479–16489 (2022).
  2. Hybrid nanocrystals of small molecules and chemically disordered polymers
    Eric P. Bruckner, Tine Curk, Luka Đorđević, Ziwei Wang, Yang Yang, Ruomeng Qiu, Adam J. Dannenhoffer, Hiroaki Sai, Jacob Kupferberg, Liam C. Palmer, Erik Luijten* and Samuel I. Stupp*
    ACS Nano 16, 8993–9003 (2022).
  3. Hydrodynamically controlled self-organization in mixtures of active and passive colloids
    Ian P. Madden, Linlin Wang, Juliane Simmchen* and Erik Luijten*
    Small 18, 2107023 (2022).
  4. Accelerated simulation method for charge regulation effects
    Tine Curk, Jiaxing Yuan and Erik Luijten*
    J. Chem. Phys. 156, 044122 (2022).

2021

  1. Formation and surface melting of nanoparticle superlattices in a solution
    Ahyoung Kim, Chang Liu, Erik Luijten and Qian Chen
    Microscopy and Microanalysis 27, 1244–1245 (2021).
  2. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly
    Marjolein Dijkstra* and Erik Luijten*
    Nature Materials 20, 762–773 (2021).
  3. Charge-regulation effects in nanoparticle self-assembly
    Tine Curk and Erik Luijten*
    Phys. Rev. Lett. 126, 138003 (2021).
  4. Particle–particle particle–mesh algorithm for electrolytes between charged dielectric interfaces
    Jiaxing Yuan, Hanne S. Antila and Erik Luijten*
    J. Chem. Phys. 154, 094115 (2021).

2020

  1. "Metaphilic" cell-penetrating polypeptide-vancomycin conjugate efficiently eradicates intracellular bacteria via a dual mechanism
    Yunjiang Jiang, Ming Han, Yang Bo, Yujun Feng, Wenming Li, Jason Ren Wu, Ziyuan Song, Zihao Zhao, Zhengzhong Tan, Yingying Chen, Tianrui Xue, Zihuan Fu, Shanny Hsuan Kuo, Gee W. Lau, Erik Luijten* and Jianjun Cheng*
    ACS Central Science 6, 2267–2276 (2020).
  2. Structure of polyelectrolyte brushes on polarizable substrates
    Jiaxing Yuan, Hanne S. Antil and Erik Luijten*
    Macromolecules 53, 2983–2990 (2020). [Reprint]
  3. Harmonic surface mapping algorithm for molecular dynamics simulations of particle systems with planar dielectric interfaces
    Jiuyang Liang, Jiaxing Yuan, Erik Luijten and Zhenli Xu
    J. Chem. Phys. 152, 134109 (2020).
  4. Kinetic pathways of crystallization at the nanoscale
    Zihao Ou, Ziwei Wang, Binbin Luo, Erik Luijten* and Qian Chen*
    Nature Materials 19, 450–455 (2020). [Reprint] [Supplementary Information]

2019

  1. Dielectric modulation of two-dimensional dipolar materials
    Ziwei Wang and Erik Luijten*
    Phys. Rev. Lett. 120, 096101 (2019). [Reprint] [Supplementary Material]
  2. Efficient dynamic simulations of charged dielectric colloids through a novel hybrid method
    Zecheng Gan, Ziwei Wang, Shidong Jiang, Zhenli Xu and Erik Luijten*
    J. Chem. Phys. 151, 024112 (2019). [Reprint]
  3. Subtle changes in surface-tethered groups on PEGylated DNA nanoparticles significantly influence gene transfection and cellular uptake
    Xiyu Ke, Zonghui Wei, Ying Wang, Sabrina Shen, Yong Ren, John-Michael Williford, Erik Luijten* and Hai-Quan Mao*
    Nanomedicine: Nanotechnology, Biology, and Medicine 19, 126–135 (2019) [Reprint] [Supporting Information]
  4. Dielectric effects on ion transport in polyelectrolyte brushes
    Jiaxing Yuan, Hanne S. Antila and Erik Luijten*
    ACS Macro Letters 8, 183–187 (2019). [Reprint] [Supporting Information]
  5. Dynamics and structure of colloidal aggregates under microchannel flow
    Ming Han, Jonathan K. Whitmer and Erik Luijten*
    Soft Matter 15, 744–751 (2019). [Reprint] [Supplementary Information] [Movie]

2018

  1. Reversible self-assembly of superstructured networks
    Ronit Freeman, Ming Han, Zaida Álvarez, Jacob A. Lewis, James R. Wester, Nicholas Stephanopoulos, Mark T. McClendon, Cheyenne Lynsky, Jacqueline M. Godbe, Erik Luijten* and Samuel I. Stupp*
    Science 362, 808–813 (2018). [Reprint] [Supplementary Materials] [Movie]
  2. Asymmetric electrolytes near structured dielectric interfaces
    Huanxin Wu, Honghao Li, Francisco J. Solis, Monica Olvera de la Cruz and Erik Luijten*
    J. Chem. Phys. 149, 164701 (2018). [Reprint]
  3. Accurate and efficient numerical simulation of dielectrically anisotropic particles
    Huanxin Wu and Erik Luijten*
    J. Chem. Phys. 149, 134105 (2018). [Reprint]
  4. The role of structural enthalpy in spherical nucleic acid hybridization
    Lam-Kiu Fong, Ziwei Wang, George C. Schatz, Erik Luijten* and Chad A. Mirkin*
    J. Am. Chem. Soc. 140, 6226–6230 (2018). [Reprint]
  5. Dielectric modulation of ion transport near interfaces
    Hanne S. Antila and Erik Luijten*
    Phys. Rev. Lett. 120, 135501 (2018). [Reprint]
  6. Effect of surface modification on water adsorption and interfacial mechanics of cellulose nanocrystals
    Zonghui Wei, Robert Sinko, Sinan Keten and Erik Luijten*
    ACS Appl. Mater. Interfaces 10, 8349–8358 (2018). [Reprint]
  7. Kirigami nanofluidics
    J. Gao, A. R. Koltonow, K. Raidongia, B. Beckerman, N. Boon, E. Luijten, M. Olvera de la Cruz and J. Huang*
    Mater. Chem. Front. 2, 475–482 (2018). [Reprint]

2017

  1. Optothermally reversible carbon nanotube-DNA supramolecular hybrid hydrogels
    Nikhita D. Mansukhani, Linda M. Guiney, Zonghui Wei, Eric W. Roth, Karl W. Putz, Erik Luijten and Mark C. Hersam*
    Macromol. Rapid Commun. 39, 1700587 (2017). [Reprint]
  2. Active colloids with collective mobility: Status and research opportunities
    Jie Zhang, Erik Luijten, Bartosz A. Grzybowski and Steve Granick*
    Chem. Soc. Rev. 46, 5551–5569 (2017). [Reprint]
  3. Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles
    Juan Wu, Wei Qu, John-Michael Williford, Yong Ren, Xuesong Jiang, Xuan Jiang, Deng Pan, Hai-Quan Mao* and Erik Luijten*
    Nanotechnology 28, 204002 (2017). [Reprint]
  4. Effective temperature concept evaluated in an active colloid mixture
    Ming Han, Jing Yan, Steve Granick* and Erik Luijten*
    Proc. Natl. Acad. Sci. USA 114, 7513–7518 (2017). [Reprint] [Supporting Information]
  5. Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis
    Zbigniew Rozynek, Ming Han, Filip Dutka, Piotr Garstecki, Arkadiusz Józefczak and Erik Luijten*
    Nature Communications 8, 15255 (2017). [Reprint] [Supporting Information]
  6. Interactions between membranes and ‘metaphilic' polypeptide architectures with diverse sidechain populations
    Michelle W. Lee, Ming Han, Guilherme Volpe Bossa, Carly Snell, Ziyuan Song, Haoyu Tang, Lichen Yin, Jianjun Cheng, Sylvio May, Erik Luijten and Gerard C.L. Wong
    ACS Nano 11, 2858–2871 (2017). [Reprint] [Supporting Information]
  7. Self-assembly of electronically abrupt borophene/organic lateral heterostructures
    Xiaolong Liu, Zonghui Wei, Itamar Balla, Andrew J. Mannix, Nathan P. Guisinger, Erik Luijten and Mark C. Hersam
    Science Advances 3, e1602356 (2017). [Reprint] [Supporting Information]

2016

  1. Dielectric effects on the ion distribution near a Janus colloid
    Huanxin Wu, Ming Han and Erik Luijten*
    Soft Matter 12, 9575–9584 (2016). [Reprint]
  2. Reconfiguring active particles by electrostatic imbalance
    Jing Yan, Ming Han, Jie Zhang, Cong Xu, Erik Luijten* and Steve Granick*
    Nature Materials 15, 1095–1099 (2016). [Reprint] [Supporting Information]
  3. Size-selective nanoparticle assembly on substrates by DNA density patterning
    Benjamin D. Myers, Qing-Yuan Lin, Huanxin Wu, Erik Luijten, Chad A. Mirkin and Vinayak P. Dravid
    ACS Nano 10, 5679–5686 (2016). [Reprint] [Supporting Information]
  4. Chaotic dynamics in a slowly rotating drum
    Homayoon Maghsoodi and Erik Luijten*
    Revista Cubana de Física 33, 50–54 (2016). [Reprint]
  5. A hybrid method for systems of closely spaced dielectric spheres and ions
    Zecheng Gan, Shidong Jiang, Erik Luijten and Zhenli Xu
    SIAM J. Sci. Comp. 38, B375–B395 (2016). [Reprint]
  6. Electric double layer of anisotropic dielectric colloids under electric fields
    Ming Han, Huanxin Wu and Erik Luijten*
    Eur. Phys. J. Special Topics 225, 685–698 (2016). [Reprint]
    (Geilo School 2015 – Cooperative particles: Patchy colloids, active matter and nanofluids)

2015

  1. Systematic coarse-grained modeling of complexation between small interfering RNA and polycations
    Zonghui Wei and Erik Luijten*
    J. Chem. Phys. 143, 243146 (2015). [Reprint] [Supporting Information]
  2. Simulation and experimental assembly of DNA–graft copolymer micelles with controlled morphology
    Zonghui Wei, Yong Ren, John-Michael Williford, Wei Qu, Kevin Huang, Shirley Ng, Hai-Quan Mao* and Erik Luijten*
    ACS Biomater. Sci. Eng. 1, 448–455 (2015). [Reprint] [Supporting Information]
  3. Comparison of efficient techniques for the simulation of dielectric objects in electrolytes
    Zecheng Gan, Huanxin Wu, Kipton Barros, Zhenli Xu and Erik Luijten*
    J. Comp. Phys. 291, 317–333 (2015). [Reprint]
  4. Toward design rules of directional Janus colloidal assembly
    Jie Zhang, Erik Luijten and Steve Granick
    Annu. Rev. Phys. Chem. 66, 581–600 (2015). [Reprint]

2014

  1. A more efficient approach to parallel-tempered Markov-chain Monte Carlo for the highly structured posteriors of gravitational-wave signals
    Benjamin Farr, Vicky Kalogera and Erik Luijten
    Phys. Rev. D 90, 024014 (2014). [Reprint]
  2. Dielectric effects in the self-assembly of binary colloidal aggregates
    Kipton Barros and Erik Luijten*
    Phys. Rev. Lett. 113, 017801 (2014). [Reprint]
  3. Orientationally glassy crystals of Janus spheres
    Shan Jiang, Jing Yan, Jonathan K. Whitmer, Stephen M. Anthony, Erik Luijten* and Steve Granick*
    Phys. Rev. Lett. 112, 218301 (2014). [Reprint] [Supporting Information]
  4. Efficient and accurate simulation of dynamic dielectric objects
    Kipton Barros, Daniel Sinkovits and Erik Luijten*
    J. Chem. Phys. 140, 064903 (2014). [Reprint]

2013

  1. Electrochemistry: Discrete answer (invited)
    Erik Luijten
    Nature Phys. 9, 606–607 (2013). [Reprint]
  2. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms
    Kun Zhao, Boo Shan Tseng, Bernard Beckerman, Fan Jin, Maxsim L. Gibiansky, Joe J. Harrison, Erik Luijten,* Matthew R. Parsek* and Gerard C.L. Wong*
    Nature 497, 388–391 (2013). [Reprint] [Supplementary Information]
  3. Plasmid-templated shape control of condensed DNA–block copolymer nanoparticles
    Xuan Jiang, Wei Qu, Deng Pan, Yong Ren, John-Michael Williford, Honggang Cui, Erik Luijten* and Hai-Quan Mao*
    Adv. Mater. 25, 227–232 (2013). [Reprint] [Supporting Information]

2012

  1. Linking synchronization to self-assembly using magnetic Janus colloids
    Jing Yan, Moses Bloom, Sung Chul Bae, Erik Luijten* and Steve Granick*
    Nature 491, 578–581 (2012). [Reprint] [Supplementary Information]
  2. Rejection-free Monte Carlo scheme for anisotropic particles
    Daniel W. Sinkovits, Stephen A. Barr and Erik Luijten*
    J. Chem. Phys. 136, 144111 (2012). [Reprint]
  3. Nanoparticle-controlled aggregation of colloidal tetrapods
    Daniel W. Sinkovits and Erik Luijten*
    Nano Lett. 12, 1743–1748 (2012). [Reprint]

2011

  1. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential
    Michael Zasloff, A. Paige Adams, Bernard Beckerman, Ann Campbell, Ziying Han, Erik Luijten, Isaura Meza, Justin Julander, Abhijit Mishra, Wei Qu, John M. Taylor, Scott C. Weaver and Gerard C.L. Wong
    Proc. Natl. Acad. Sci. USA 108, 15978–15983 (2011). [Reprint] [Supporting Information]
  2. Influence of hydrodynamics on cluster formation in colloid–polymer mixtures
    Jonathan K. Whitmer and Erik Luijten*
    J. Phys. Chem. B 115, 7294–7300 (2011). [Reprint]
  3. Triblock colloids for directed self-assembly
    Qian Chen, Erich Diesel, Jonathan K. Whitmer, Sung Chul Bae, Erik Luijten and Steve Granick
    J. Am. Chem. Soc. 133, 7725–7727 (2011). [Reprint]
  4. Sedimentation of aggregating colloids
    Jonathan K. Whitmer and Erik Luijten*
    J. Chem. Phys. 134, 034510 (2011). [Reprint]
  5. Supracolloidal reactions kinetics of Janus spheres
    Qian Chen, Jonathan K. Whitmer, Shan Jiang, Sung Chul Bae, Erik Luijten* and Steve Granick*
    Science 331, 199–202 (2011). [Reprint] [Supporting Information]

2010

  1. Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures
    Douglas K. Ashton, Jiwen Liu, Erik Luijten and Nigel B. Wilding
    J. Chem. Phys. 133, 194102 (2010). [Reprint]
  2. Fluid–solid boundary conditions for multiparticle collision dynamics
    Jonathan K. Whitmer and Erik Luijten*
    J. Phys.: Condens. Matter. 22, 104106 (2010). [Reprint]
  3. Janus particle synthesis and assembly
    Shan Jiang, Qian Chen, Mikta Tripathy, Erik Luijten, Kenneth S. Schweizer and Steve Granick
    Adv. Mater. 22, 1060–1071 (2010). [Reprint]
  4. Structural properties of materials created through freeze casting
    Stephen A. Barr and Erik Luijten*
    Acta Materialia 58, 709–715 (2010). [Reprint]

2009

  1. Structure of ions and water around a polyelectrolyte in a polarizable nanopore
    Lei Guo and Erik Luijten*
    Int. J. Mod. Phys. C 20, 1485–1492 (2009). [Reprint]

2008

  1. Clusters of amphiphilic colloidal spheres
    Liang Hong, Angelo Cacciuto, Erik Luijten* and Steve Granick*
    Langmuir 24, 621–625 (2008). [Reprint]

2007

  1. Quantum criticality, lines of fixed points, and phase separation in doped two-dimensional quantum dimer models
    Stefanos Papanikolaou, Erik Luijten and Eduardo Fradkin
    Phys. Rev. B 76, 134514 (2007). [Reprint]
  2. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media
    Lori K. Sanders, Wujing Xian, Camilo Guáqueta, Michael J. Strohman, Chuck R. Vrasich, Erik Luijten* and Gerard C. L. Wong*
    Proc. Natl. Acad. Sci. USA 104, 15994–15999 (2007). [Reprint]
  3. Polyelectrolyte condensation induced by linear cations
    Camilo Guáqueta and Erik Luijten*
    Phys. Rev. Lett. 99, 138302 (2007). [Reprint]
    Selected for Virtual Journal of Biological Physics Research 14, issue 7 (2007).
  4. Translocation of polymers out of confined geometries
    Erik Luijten* and Angelo Cacciuto
    Comp. Phys. Comm. 177, 150–153 (2007). [Reprint]

2006

  1. Clusters of charged Janus spheres
    Liang Hong, Angelo Cacciuto, Erik Luijten* and Steve Granick*
    Nano Lett. 6, 2510–2514 (2006). [Reprint]
  2. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes
    Pai-Yi Hsiao and Erik Luijten*
    Phys. Rev. Lett. 97, 148301 (2006). [Reprint]
    Selected for Virtual Journal of Biological Physics Research 12, issue 8 (2006).
  3. Effective interactions in mixtures of silica microspheres and polystyrene nanoparticles
    Stephen A. Barr and Erik Luijten*
    Langmuir 22, 7152–7155 (2006). [Reprint]
  4. Simulation of phase transitions in highly asymmetric fluid mixtures
    Jiwen Liu, Nigel B. Wilding and Erik Luijten*
    Phys. Rev. Lett. 97, 115705 (2006). [Reprint]
  5. Confinement-driven translocation of a flexible polymer
    Angelo Cacciuto and Erik Luijten*
    Phys. Rev. Lett. 96, 238104 (2006). [Reprint]
    Selected for Virtual Journal of Biological Physics Research 11, issue 12 (2006).
  6. Self-avoiding flexible polymers under spherical confinement
    Angelo Cacciuto and Erik Luijten*
    Nano Lett. 6, 901–905 (2006). [Reprint]
  7. The effect of salt on self-assembled actin–lysozyme complexes
    Camilo Guáqueta, Lori K. Sanders, Gerard C. L. Wong and Erik Luijten*
    Biophys. J. 90, 4630–4638 (2006). [Reprint]
  8. Fluid simulation with the geometric cluster Monte Carlo algorithm (invited article for special issue on Monte Carlo methods)
    Erik Luijten
    Computing in Science and Engineering 8(2), 20–29 (2006). [Reprint]

2005

  1. Colloidal stabilization via nanoparticle halo formation
    Jiwen Liu and Erik Luijten*
    Phys. Rev. E 72, 061401 (2005). [Reprint]
    Selected for Virtual Journal of Nanoscale Science & Technology 12, issue 25 (2005).
  2. Screening in ionic systems: Simulations for the Lebowitz length
    Young C. Kim, Erik Luijten and Michael E. Fisher
    Phys. Rev. Lett. 95, 145701 (2005). [Reprint]
  3. Critical polymer–polymer phase separation in ternary solutions
    Lei Guo and Erik Luijten*
    J. Chem. Phys. 123, 074907 (2005). [Reprint]
  4. Structure and stability of self-assembled actin–lysozyme complexes in salty water
    Lori K. Sanders, Camilo Guáqueta, Thomas E. Angelini, Jae-Wook Lee, Scott C. Slimmer, Erik Luijten* and Gerard C. L. Wong*
    Phys. Rev. Lett. 95, 108302 (2005). [Reprint]
    Selected for Virtual Journal of Nanoscale Science & Technology 12, issue 11 (2005).
    Selected for Virtual Journal of Biological Physics Research 10, issue 6 (2005).
  5. Interparticle interactions and direct imaging of colloidal phases assembled from microsphere–nanoparticle mixtures (invited)
    Carlos J. Martinez, Jiwen Liu, Summer K. Rhodes, Erik Luijten, Eric R. Weeks and Jennifer A. Lewis
    Langmuir 21, 9978–9989 (2005). [Reprint]
  6. Generalized geometric cluster algorithm for fluid simulation
    Jiwen Liu and Erik Luijten*
    Phys. Rev. E 71, 066701 (2005). [Reprint]
  7. Reversible gel formation of triblock copolymers studied by molecular dynamics simulation
    Lei Guo and Erik Luijten*
    J. Polym. Sci. Part B: Polym. Phys. 43, 959–969 (2005). [Reprint]

2004

  1. Stabilization of colloidal suspensions by means of highly charged nanoparticles
    Jiwen Liu and Erik Luijten*
    Phys. Rev. Lett. 93, 247802 (2004). [Reprint]
    Selected for Virtual Journal of Nanoscale Science & Technology 10, issue 25 (2004).
  2. Rejection-free geometric cluster algorithm for complex fluids
    Jiwen Liu and Erik Luijten*
    Phys. Rev. Lett. 92, 035504 (2004). [Reprint]

2003

  1. Shape variation of linear polymers upon phase separation in a ternary solution
    Lei Guo and Erik Luijten*
    Macromolecules 36, 8201–8204 (2003). [Reprint]
  2. Precise simulation of near-critical fluid coexistence
    Young C. Kim, Michael E. Fisher and Erik Luijten
    Phys. Rev. Lett. 91, 065701 (2003). [Reprint]
  3. Dynamical properties of the slithering snake algorithm: A numerical test of the activated-reptation hypothesis
    Laetitia Mattioni, Joachim P. Wittmer, Jörg Baschnagel, Jean-Louis Barrat and Erik Luijten
    Eur. Phys. J. E 10, 369–385 (2003). [Reprint]
  4. Crossover critical behavior in the three-dimensional Ising model
    Young C. Kim, Mikhail A. Anisimov, Jan V. Sengers and Erik Luijten
    J. Stat. Phys. 110, 591–609 (2003). [Reprint]

2002

  1. Boundary between long-range and short-range critical behavior in systems with algebraic interactions
    Erik Luijten and Henk W.J. Blöte
    Phys. Rev. Lett. 89, 025703 (2002). [Reprint]
  2. Universality class of criticality in the restricted primitive model electrolyte
    Erik Luijten, Michael E. Fisher and Athanassios Z. Panagiotopoulos
    Phys. Rev. Lett. 88, 185701 (2002). [Reprint]
  3. On quantum effects near the liquid–vapor transition in helium
    Martin H. Müser and Erik Luijten
    J. Chem. Phys. 116, 1621–1628 (2002). [Reprint]
  4. Cluster Monte Carlo: Extending the range
    Henk W.J. Blöte, Jouke R. Heringa and Erik Luijten
    Comp. Phys. Comm. 147, 58–63 (2002). [Reprint]

2001

  1. The heat capacity of the restricted primitive model electrolyte
    Erik Luijten, Michael E. Fisher and Athanassios Z. Panagiotopoulos
    J. Chem. Phys. 114, 5468–5471 (2001). [Reprint]
  2. Criticality in one dimension with inverse square-law potentials
    Erik Luijten and Holger Meßingfeld
    Phys. Rev. Lett. 86, 5305–5 308 (2001). [Reprint]
  3. Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models (invited review)
    Kurt Binder and Erik Luijten
    Physics Reports 344, 179–253 (2001). ("Renormalization group theory in the new millennium") [Reprint]
  4. Kac-potential treatment of nonintegrable interactions
    Benjamin P. Vollmayr-Lee and Erik Luijten
    Phys. Rev. E 63, 031108 (2001). [Reprint]

2000

  1. Crossover behavior in 3He and Xe near their liquid-vapor critical point
    Erik Luijten and Horst Meyer
    Phys. Rev. E 62, 3257–3261 (2000). [Reprint]
  2. Comment on “Scaling laws for a system with long-range interactions within Tsallis statistics”
    Benjamin P. Vollmayr-Lee and Erik Luijten
    Phys. Rev. Lett. 85, 470 (2000). [Reprint]
  3. Monte Carlo investigations of phase transitions: status and perspectives
    Kurt Binder, Erik Luijten, Marcus Müller, Nigel B. Wilding and Henk W.J. Blöte
    Physica A 281, 112–128 (2000). [Reprint]
  4. Monte Carlo tests of theoretical predictions for critical phenomena: still a problem?
    Kurt Binder and Erik Luijten
    Comp. Phys. Comm. 127, 126–130 (2000). [Reprint]
  5. High-dimensional lattice gases
    Jouke R. Heringa, Henk W.J. Blöte and Erik Luijten
    J. Phys. A 33, 2929–2941 (2000). [Reprint]
  6. Optimized energy calculation in lattice systems with long-range interactions
    Michael Krech and Erik Luijten
    Phys. Rev. E 61, 2058–2064 (2000). [Reprint]

1999

  1. Do crossover functions depend on the shape of the interaction profile?
    Erik Luijten and Kurt Binder
    Europhys. Lett. 47, 311–317 (1999). [Reprint]
  2. Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems
    Erik Luijten
    Phys. Rev. E 59, 4997–5008 (1999). [Reprint]
  3. Shape of crossover between mean-field and asymptotic critical behavior in a three-d imensional Ising lattice
    Mikhail A. Anisimov, Erik Luijten, Vakhtang A. Agayan, Jan V. Sengers and Kurt Binder
    Phys. Lett. A 264, 63–67 (1999). [Reprint]
  4. Finite-size scaling above the upper critical dimension revisited: The case of the five-dimensional Ising model
    Erik Luijten, Kurt Binder and Henk W.J. Blöte
    Eur. Phys. J. B 9, 289–297 (1999). [Reprint]
  5. Test of renormalization predictions for universal finite-size scaling functions
    Erik Luijten
    Phys. Rev. E 60, 7558–7561 (1999). [Reprint]
  6. Nature of crossover from classical to Ising-like critical behavior
    Erik Luijten and Kurt Binder
    Phys. Rev. E 58, R4060–R4063 (1998); 59, 7254(E) (1999). [Reprint] [Erratum]

1997

  1. Crossover scaling in two dimensions
    Erik Luijten, Henk W.J. Blöte and Kurt Binder
    Phys. Rev. E 56, 6540–6556 (1997). [Reprint]
  2. Nonmonotonic crossover of the effective susceptibility exponent
    Erik Luijten, Henk W.J. Blöte and Kurt Binder
    Phys. Rev. Lett. 79, 561–564 (1997). [Reprint]
  3. Universality and the five-dimensional Ising model
    Henk W.J. Blöte and Erik Luijten
    Europhys. Lett. 38, 565–570 (1997). [Reprint]
  4. Classical critical behavior of spin models with long-range interactions
    Erik Luijten and Henk W.J. Blöte
    Phys. Rev. B 56, 8945–8958 (1997). [Reprint]
  5. Comment on Finite-size scaling of the 5D Ising model
    Erik Luijten
    Europhys. Lett. 37, 489–491 (1997). [Reprint]

1996

  1. Medium-range interactions and crossover to classical critical behavior
    Erik Luijten, Henk W.J. Blöte and Kurt Binder
    Phys. Rev. E 54, 4626–4636 (1996). [Reprint]
  2. Finite-size scaling and universality above the upper critical dimensionality
    Erik Luijten and Henk W.J. Blöte
    Phys. Rev. Lett. 76, 1557–1 561 (1996); 76, 3662(E) (1996). [Reprint] [Erratum]

1995

  1. Ising universality in three dimensions: a Monte Carlo study
    Henk W.J. Blöte, Erik Luijten and Jouke R. Heringa
    J. Phys. A 28, 6289–6313 (1995). [Reprint]
  2. Monte Carlo method for spin models with long-range interactions
    Erik Luijten and Henk W.J. Blöte
    Int. J. Mod. Phys. C 6, 359–370 (1995). [Reprint]

1994

  1. Inverse roughening transition in the staggered body-centered solid-on-solid model
    Erik Luijten, Henk van Beijeren and Henk W.J. Blöte
    Phys. Rev. Lett. 73, 456–459 (1994). [Reprint]

Invited conference proceedings and lecture notes

  1. Monte Carlo simulation of spin models with long-range interactions
    Erik Luijten
    Computer Simulation Studies in Condensed-Matter Physics XII.Springer Proceedings in Physics Vol. 85, edited by D.P. Landau, S.P. Lewis and H.-B. Schüttler, p. 86–99. Springer, Heidelberg, 2000. [Preprint] (identical to published version)
  2. Cluster algorithms: Beyond suppression of critical slowing down
    Erik Luijten and Jiwen Liu
    The Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm. (Los Alamos National Laboratory, June 9-11, 2003). AIP Conference Proceedings Vol. 690, edited by J.E. Gubernatis, p. 225–231. American Institute of Physics, Melville, 2003. [Reprint]
  3. Geometric Cluster Algorithm for Interacting Fluids
    Erik Luijten and Jiwen Liu
    Computer Simulation Studies in Condensed-Matter Physics XVII. Springer Proceedings in Physics Vol. 103, edited by D.P. Landau, S.P. Lewis and H.-B. Schüttler, p. 109–121. Springer, Heidelberg, 2006.
  4. Introduction to Cluster Monte Carlo Algorithms
    Erik Luijten
    Computer Simulations in Condensed Matter: from Materials to Chemical Biology. (International School of Solid State Physics - 34th course, Erice, Italy, July 20–August 1, 2005) Lecture Notes in Physics Vol. 703, edited by M. Ferrario, K. Binder and G. Ciccotti, p. 13–38. Springer, Berlin, 2006. [Reprint]

Contributed conference proceedings

  1. Critical Phenomena and "Crossover Scaling" in Model Systems for Soft Condensed Matter
    Kurt Binder, Jérôme Houdayer, Erik Luijten and Marcus Müller
    Proceedings of the NIC Symposium 2001. NIC Series Vol. 9, edited by H. Rollnik and D. Wolf, p. 373–383. John von Neumann Institute for Computing, Jülich, 2002. [Reprint]
  2. Langevin Dynamics Study of Polymer Translocation through a Nanopore
    Lei Guo and Erik Luijten
    Computer Simulation Studies in Condensed-Matter Physics XVIII. Edited by D.P. Landau, S.P. Lewis and H.-B. Schüttler. Springer, Heidelberg, 2006.

Theses

  • The staggered F-model: a transfer matrix approach (Master's thesis)
    Institute for Theoretical Physics, Utrecht University, The Netherlands, 1993.
  • Interaction Range, Universality and the Upper Critical Dimension (Ph.D. thesis)
    Delft University of Technology, The Netherlands, 1997. Published and distributed by Delft University Press, ISBN 90-407-1552-1. Download electronic version (1.6MB)